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Abstract

This reflection is written for the purpose of formalizing my new and improved under-
standing of linear algebra, and an understanding that will improve even during just the
process of writing this reflection. We will explore the essential concepts of linear algebra and
understand them in a new light; this will be the geometric interpretation of linear algebra,
as opposed to the interpretation based solely on the manipulation of symbols. Through
this heightened understanding, many other concepts will be elucidated; in particular, topics
in Machine Learning and Deep Learning (particularly with respect to manifolds) will be
explored in the light of this new understanding.

1 Vectors and Linear Transformations

Abstractly, linearity is defined by two simple axioms, additivity and scalability. If a function
or object satisfies these axioms, then it can be understood as linear. If the axioms below in
Equation 1 are satified, then L is a linear function.

L(a + b) = L(a) + L(b)

L(ca) = cL(a)
(1)

In linear algebra, vectors satisfy these properties of linearity. On an abstract level the concept
of the derivative is also linear since it follows these axioms. But for our purposes here we will
explore vectors and matrices, both of which are linear objects that create linear transformations.

We understand a vector as what some might call a column vector, e.g., a matrix v ∈ Rn×1.
This vector has a tail at the origin and has a head that points to a point in n-dimensional space
(n-space) with coordinates corresponding to its values. A more nuanced understanding, which
we will explore later, leads us to understand a vector as a matrix with rank 1 that defines a
1-dimensional manifold in the n-space in which it is defined.

A matrix is commonly represented simply as a rectangle of numbers, some M ∈ Rn×m.
This is a set of symbols, and there are certain laws, such as multiplication, addition, inverse,
determinant that are well known, but moreso as rules for the task of manipulating symbols. This,
while perhaps useful for a computational implementation, does not strike at the core essence of
matrices in their geometric understanding.

We understand a matrix as a linear transformation. It is linear because it satisfies the prop-
erties described above in Equation 1; geometrically, this means that a matrix transforms space,
but keeps the coordinate lines parallel and equidistant with each other; e.g., in a euclidean co-
ordinate plane you would draw vertical lines to designate x = 0, x = 1, x = 2, etc. – a linear
transformation may change their orientation and may also compress or stretch their distance,
but they will always remain parallel with each other and each one will have the same distance
between each of its neighbors. This will become more clear below.
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1.1 The Basics

Another representation of a vector is in terms of the fundamental basis vectors of an n-space.
Let ij ∈ Rn with j = 1 . . . n be defined as the sparse vector where ik = 1 if k = j else ik = 0.
Any vector v ∈ Rn defined with constants a1 . . . an is thus understood as being a sum of these
basic vectors:

v =

n∑
j=1

ajij (2)

In 3-dimensional space it is common to define the basic vectors as follows: i = 〈1, 0, 0〉; j =
〈0, 1, 0〉; k = 〈0, 0, 1〉. These basic vectors actually define the x, y, z-axes respectively in 3-space,
which is why, in this case v ∈ R3 is frequently defined with constants x, y, z:

v = xi + yj + zk = x

1
0
0

+ y

0
1
0

+ z

0
0
1

 (3)

We will often remain in the general formulation above as expressed in Equation 2, although,
occasionally, for the purpose of establishing a solid grounding, we will explain concepts with
respect to the specific cases of dimensions that are understandable and visualizable for humans.

Critical Point. The ij basic vectors define the space on which we operate in the most simple
way possible. Concatenated together, they define the identity matrix In, the most important
matrix in linear algebra.

In =

 | | . . . |
i1 i2 . . . in
| | . . . |

 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 (4)

By concatenating these basic vectors above in Equation 4, we see that we have defined the
columns of a matrix. This matrix defines a basis in n-space called the canonical basis, a space
we call the canonical space – it is the space in which everything is initially defined, upon which
everything is derived. We will soon come to understand all matrices as linear transformations
from the canonical space to another space.

1.2 Bases and Linear Transformations

The question we are led to ask is the following: can we use vectors other than ij to define our
n-space? Indeed, we may want to, for example, build a representation of 2-space such that, given
any vector v defined by basis vectors i1, i2, we could determine, via a general form, where v
would be oriented given a 90-degree rotation of the canonical space.

1.2.1 Basis and Span

To understand a basis, we must first understand the concept of span. The span of a vector v ∈ Rn

is simply the set of all vectors that can be represented by a scaling of v; e.g., {av : ∀a ∈ R}.
This span defines a line in n-space; this line is, by definition, 1-dimensional, but it exists in
n-space because v is defined in n-space. We can also generalize to understand the span of a set
of vectors S = {v1 . . .vk}, which is the set of all possible linear combinations of the vectors in

S; e.g., span(S) = {
∑k

i=1 aivi|k ∈ N, ai ∈ R,vi ∈ S}. A vector vi ∈ S is redundant if it can
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be expressed as a linear combination of the other vectors vj ∈ S (j 6= i) – this means that vi is
linearly dependent on the other vectors in S and therefore does not add any representative power
to S; e.g. span(S) = span(S − {vi}). This is the essence of the concept of linear independence.
Essentially, if a vector v adds representative power to S then it is linearly independent from the
rest of the vectors in S; e.g., it cannot be expressed via a linear combination of the other vectors
in S, meaning that span(S ∪ {v}) 6= span(S).

The definition of a basis for Rn is a set S of vectors such that S is a span of Rn; e.g., every
possible vector in Rn can be represented as a linear combination of the vectors in S. It is easy to
prove that S can at most be a basis for R|S| – therefore, we thus recognize that a single vector
v 6= 0 ∈ Rn only spans R1, but it defines a line that lies within Rn.

Every matrix M ∈ Rn×n has columns (and rows, but we will use columns only for consistency)
that define a basis in some k-space with k ≤ n. In the next subsection we will consider what
happens when k = n, and then we will explore when k < n. Note that the maximum value of k
that M defines a basis for is called the rank of M. The following statements are equivalent:

� M has rank k;

� M as k linearly independent columns;

� M spans Rk.

� The largest n-space for which M defines a basis is Rk;

� The smallest n-space for which M cannot define a basis is Rk+1;

� Kian’s definition: M’s maximal representative power occurs when it is used to express Rk.

1.2.2 Matrices as Linear Transformations

We will now consider when M ∈ Rn×n has full rank; e.g., rank(M) = n. M is fundamentally an
expression of a linear transformation from one space to another; in particular, on its own it is
the transformation from the canonical basis of Rn to the M-basis of Rn. In a word, it expresses
a new space in terms of linear combinations of the columns of In.

Consider the particular example of this phenomenon in 2-space and the differences in expres-
sion of a vector v ∈ R2, when considering a new basis defined by a matrix M, which we express
as the transformation from the canonical basis I2 = 〈i, j〉:

M =

[
m11 m12

m21 m22

]
=
[
m11i + m21j m12i + m22j

]
Equation 5 expresses the canonical basis representation of v, while Equation 6 expresses the M-
basis representation of v. This expressivity is understood as the left multiplication of the vector
by the matrix. In other words, M represents v in a new space in terms of its basis vectors; this
is what multiplying a matrix times a vector is, and it can be understood as the projection of v
from the canonical space onto the space defined by M.

I2v = ai + bj =

[
a
b

]
(5)

Mv = a(m11i + m21j) + b(m12i + m22j) =

[
am11 + bm12

am21 + bm22

]
(6)

The concept of invertibility now arises. When we do a transformation M we would like to,
essentially, “undo” the transformation – this is expressed by M−1. We thus have the property
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MM−1 = In. This makes sense because M transforms us to a new space, but M−1 brings us
back to the original one; again, in linear algebra, the original space is the canonical space defined
by In. This property of invertibility is what differentiates matrices with full rank from those
with rank(M) < n, and it gives rise to a geometric understanding of the determinant, which we
describe later on.

When the rank of M = k < n then we have a matrix with linearly dependent columns. Indeed,
it is incapable of spanning Rn, only being able to span Rk. We might say that M expresses a
k-dimensional “slice” of Rn, since it is still defined over that space. For example, a vector in
R2 defines a line in the 2-space; that is, a 1-dimensional slice of R2 that is within R2. While
only having one-dimensional expressivity power, it is still expressed in the context of the higher
dimension. Similarly, a rank 2 matrix in R3 can only span R2, meaning that it thus expresses a
plane in R3, meaning that it again slices the space, but does not span it. For example, consider
the matrix below defined in 3-space:

M =

 | | |
c1 c2 c3
| | |

 =

2 0 4
0 3 0
0 1 0

 (7)

This matrix has rank 2, we see clearly that c1 and c3 are linearly dependent (c3 = 2c1). This
means that it can only express an R2 subspace of R3, what (I believe) we can call a linear manifold
within R3. In fact, we find that the columns c1, c2 of M span an R2-subspace defined on a plane
present in R3 that represents all linear combinations of c1, c2; e.g., {ac1 + bc2|∀a, b ∈ R}.

Therefore, when you multiply a linear transformation W ∈ Rn×n (with rank(W) = n) by
M, you are projecting W into a space of weaker representative power, it is collapsed into a lower
dimension despite the fact that M ∈ Rn×n. This is because a transformation of W to M-space
re-expresses W with fewer linearly independent vectors than it needs to have full expressivity.
This is why rank(XY ) = min(rank(X), rank(Y )). By collapsing W into k-space by multiplying
it by M (but expressed in Rn×n, in n-space) you have forever doomed it to a realm of lower
dimensional representation; no linear transformation will ever be able to send it back up to n-
space representation. This is why a matrix in Rn×n with rank k < n is not invertible; you
cannot use a linear transformation to go back up into a new dimension after collapsing it down.
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