Notes on Reinforcement Learning

Kian Kenyon-Dean

March 15, 2018

1 Fundamentals

The essence of Reinforcement Learning (RL) is build an agent that can learn how to act opti-
mally (or, good enough) in some environment by being able to learn from its ezperience in the
environment. An introduction into RL begins with an exploration into the more simple problem
setting of bandits, continues onto dynamic programming (where learning can occur without
“experiencing” the environment, so long as a perfect model of the environment is present). The
essence of RL thus begins when knowledge truly is obtained from an agent’s experience in the
world, also known as sampling. We begin with a brief overview of the introductory methods
and an exposition of Finite Markov Decision Processes, after which we can truly begin to
engage with RL.

1.1 The General Update Rule

We first pose the general form of the update rule for estimating things, which is a universal
formula that is applied in many situations in RL; it’s usefulness will be elucidated by examples.
Very generally, we are attempting to form an estimate E of something, incrementally through
time. This something generates a target value U; at each step ¢ of incrementation. We update
our new estimate Eyyq of that thing by a step-size a € R, based on the difference between that
target U; and our old estimate Fj.

Et+1 — Et + Oé[Ut - Et} (1)

Overtime, we would like for the difference between our estimate and the target to decrease,
until we eventually can perfectly estimate U; with Ey, regardless of the time step. Most of the
time, we assume U, is a stochastic function that will always randomly sample values from an
unknown distribution; in this case, our estimate will not be of the function itself, but of the
expected value of the function, E[U;]. How do we know if we will be able to approximate the
true expected value of U;? If we generalize our step-size « to be a function of time, a(t), then,
stochastic approximation theory tells us that the following conditions on «(t) must be met if we
want to be guaranteed to converge to F = E[U;] (given an infinite amount of time):

o0 oo
Z at) = oo and Z a?(t) < oo (2)
t=1 t=1

In layman’s terms, the first condition says the step-size must change relatively fast; the second
says that the step-size cannot change too fast. For example, oy = % satisfies these conditions;
it also expresses the definition of the incremental version of an equally-weighted average. This
would be a useful condition for a stationary problem to be satisfied. However, if the environment

changes over time (i.e., if U;(-) samples from different distributions depending on t), this is not

a desirable condition. Keeping «(t) = a to be a constant value does not satisfy these conditions,
but this is actually desirable if the problem is non-stationary in this way. This defines what
is called the exponential recency-weighted average, where new experiences are more valued than
past experiences when forming our estimate.

1.2

A Brief Overview of Dichotomies in RL

There are many different strains of RL, and often times an algorithm arises from selecting an
option from these dichotomies, where different algorithms and problem formulations are more
appropriate for certain settings than others.

<

Exploration vs Exploitation: do we seek to explore the possible benefits of going to other
states, or should we exploit our current knowledge of the values of states in order to
maximize the reward we expect to obtain?

Continuing vs Episodic: does a task end after a finite number of steps or does it go on
forever? This dichotomy lends itself to different formulations of algorithms, but they can
be generalized with clever use of notation. It turns out that discounting is not necessary
in the continuing setting, where instead average reward is used to compare against.

Global vs Sampling: are we attempting to learn based on complete knowledge of the MDP?
If so, then we need not learn from experience, rather we can just solve the system of
equations. However, in most problems we do not possess the scope of the MDP, or it is
much to large; this fact necessitates the use of sampling, of using an agent’s experience in
the MDP to learn and make judgements about the MDP and the best way to act within
it. DP vs MC and TD.

Prediction vs Control: given a policy 7 - a way of choosing actions within an MDP - we
may want to know, how good is this policy? We may also want to know, how can we make
this policy better, if it is not the best? State value functions vs state-action value functions.

Bootstrapping vs Not bootstrapping: we are approximating the values of states and/or state-
action pairs. Do we make these approximations by factoring in our current approximations
in addition to whatever reward we obtain, or do we only factor in the reward we obtain
without biasing ourselves to our previous approximations? DP and TD vs MC.

On- vs Off-policy: do we learn about the policy generating behavior, or do we learn about
another policy while following the behavior of a different policy? SARSA vs Q-learning.

1-Step vs N-step: when approximating values, do we seek to update after only one step, or
do we want to wait n-steps before updating? The former will be faster but more biased,
while the latter will be slower but more “true” in the sense of adhering more to the true
expected returns of the MDP. TD(0) and DP vs n-step TD and MC.

Forward-view vs Backward-view: are we going to define our value approximations by wait-
ing until we see the results of our actions, or will we retroactively define them based on
hindsight looking at our previous actions and the current state we are in as a result of
them? n-step TD and A-return TD vs TD(A) and MC.

Tabular vs Function Approximation: will we seek to treat each state (or state-action pair)
completely separately, or will we attempt to generalize states such that an update based
on one state will affect the values for other similar states?

Model-based vs Model-free: do we know the dynamics of the MDP or not? Should we
attempt to model the dynamics directly based on our experience in the MDP?

2 Multi-Arm Bandits

The characteristic feature of bandits is that they assume an environment where only a single
action can be taken, where actions taken do not affect the state of the environment. In other
words, they are single-step episodic tasks. Whenever an action is taken, a reward will be given,
some scalar value. The objective is thus to figure out which of the k actions is the best to take;
i.e., which action will maximize the amount of reward I get over time, my expected reward?

Formally, we are given a set of actions a € A, and some unknown stochastic reward function
r(a) € R. Whenever an action a is selected, we will receive a reward value of r(a). Therefore,
if we seek to maximize the expected reward we get, we really want to be able to approximate
r(a),Va. Let us declare our approximation of r(a) to be ¢(a), which will not approximate the
function itself, but rather the expected value of the function. The true expectation of the reward
is captured by the ideal approximation ¢*(a), represented as an expectation of the reward function
over time steps ¢ with actions taken being A;:

q"(a) = E[r(Ar)|A; = d] (3)

How might we approximate ¢*(a)? Well, we will approximate it by attempting to learn from
experience, by pulling the arms, seeing what happens, and adjusting our estimate of the reward
for those actions accordingly. The following equation defines the update rule, given some action
a is taken at time t, and a step-size function «(t):

qr+1(a) < gi(a) + a(t)[r(a) — g:(a)] (4)

This update is sufficient for all bandit problems. The real question that arises is how to select
an action? If we want to maximize the accumulated reward, then we must balance exploration
and exploitation. On the one hand, we want solid estimates of the values of actions; on the
other hand, we want to maximize our accumulated reward, which means exploiting our current
knowledge and selecting the action we think is best. There are several methods for performing
action selection and balancing this trade-off.

Epsilon-Greedy Let the greedy action be defined as the action that has the maximal approx-
imate expected value; i.e., Ay = argmax, ¢(a). If our values are correct, then naturally we’d
exploit our knowledge and only perform this action. However, if we are not confident about
our values, then we want to occasionally test other actions in order to better approximate their
expected values. Thus, with a probability €, we will select an action randomly.

Upper-Confidence-Bound (UCB) UCB selects actions for the purpose of exploration with
a bit more sophistication than the above method. We will instead randomly select actions based
on how good we think they are, in addition to accounting for the amount of time that has passed,
and the number of times we have selected that action Ny(a):

Int
Ay = argmax | ¢(a) + ¢) 5
t ga (Q() Nt(CL) ()

Here, ¢ > 0 controls the degree of exploration we pursue. Additionally, if an action hasn’t
been selected yet (i.e., Ni(a) = 0) then we will take that action. The square root term measures
the uncertainty or variance in our estimate of g(a).

Gradient Bandit In gradient bandit algorithms, we are not concerned with approximating the
values of actions; rather, we seek to model a numerical preference for taking an action a at time ¢,
Hy(a). Using this, we define our first notion of a policy, m¢(a), which models the probability that
we take an action at that time. Gradient bandits define their policy using a softmax distribution:

_ expHq(a) (©)

ZbeA €xXp Ht(b)

The learning algorithm is based on stochastic gradient ascent, with updates based on if the
action selected at time ¢ is a = A;, where other, non-selected actions b are updated slightly
differently. We assume a reference or baseline reward R, is defined; often it can be updated and
maintained with an update-based averaging of the rewards obtained over time:

m(a)

Hypi(a) = Hy(a) + (R — R)(1 —m(a)) (a=Ay)

_ 7
Hi1(b) < Hi(b) — a(Ry — Re)me(b) (b# A) g

3 Finite MDPs

A Finite Markov Decision Process is defined by {A,S,P(-) € RIS| »(-) € R,~}; P and r are
understood as function mappings, as we see below:

o A: the set of all m possible actions a that can be taken.
o S: the set of all n states s the environment can be in.

o P(s,a) € RE,: a function that maps from state-action tuples to a distribution vector over
states. Namely, Vs, a, we have P(s,a) = Pr{s'|s,a}, a vector of transition probabilities to
all states s’, given that we were in state s and took action a.

o r(s,a) € R: a function that maps from state-action tuples to a real-valued reward. Often-
times, this is a stochastic, non-stationary function; it may thus sometimes be necessary to
indicate it by the current time step ¢ in such cases. Most of the time, it is unknown and
we will seek to approximate it by attempting to model its expected value.

o ~: the discount factor (will be elucidated later).

Any agent that seeks to act in the world of our MDP will need to select actions at each time
step t. Let the selected action at time step ¢t be denoted A;, and let the state the agent is in at
time step t be denoted S;. Our agent seeks to maximize reward over time, called the return G.
This is done by maximizing the expected return; the lower equation models the expected return
starting at time step ¢, ending at some time step T' (which is finite for episodic task, and infinite
for continuing tasks):

= > Rmam
1G] = IS 18) € 31 R =
t=0 t=0

. (8)
Gy =Y _7"'r(Sk, Ax)
k=t
Above we pose the expected return with respect to the absolute maximum possible return,
based on the maximal reward value that can be attained, Ry,q; = max, ,7(s,a). Of course we
now must determined which actions we will take, and which states we will find ourselves in. This
brings us to the concept of a policy.

3.1 A Policy in an MDP

A policy 7(s) is a function mapping from R™ — R, from states to a probability distribution
over actions. Most of the time, however, we will use the policy to denote a specific probability of
selecting an action a in state s, indicated as 7(a|s) € R; this is only for notational convenience, it
simply indicated selecting the value in the probability vector corresponding to action a; thus, we
have » . , m(als) = 1. The following questions immediately arise upon introducing this concept
of a policy:

¢ Prediction: If an agent follows policy m within the MDP, what is the expected return it
will achieve? I.e., what is E,[G]?

o Control: What is the optimal policy 7* that obtains the maximum possible expected
return for the MDP? Le., what is argmax, E.[G]?

We model expected return by posing the question within a slightly more specific, more useful
setting. We pose the question: what is the expected return an agent will get by following 7 given
that it starts in state s? This is denoted as the value of a state under m, v, (s).

3.2 Bellman Equations

Given knowledge of the MDP, the prediction question is answered with complete certainty using
the recursive definition induced by the bellman equation. It is naturally recursive since the
value of state must be based on how the policy will act in the states following it.

Vr(s) = Ex[Gt|S: = 5] = Z m(als) (r(s, a) + vy Z P(5’|57a)vw(5’)) (9)
acA s'eS
The control problem becomes answered by first posing the action-value function ¢.(s,a),
which models the expected return from following policy 7, after taking some action a in state s,
where a is not necessarily the greedy action induced by the policy. We define this now, but its
role for control will be seen later on.

qr(s,a) = EL[Gy|S; = s, Ay = a] = r(s,a) + Z P(s'|s,a)vg(s") (10)
s'eS
We have thus defined the bellman equations for value functions and action-value functions
in a finite MDP. It is more elucidating to pose them in their linear algebraic formulations, upon
which we will immediately recognized that the bellman equation actually defines a linear system
of n equations with exactly n unknowns, whereupon an exact solution to the prediction problem
will be determined.
Let us define the following two constructs induced by policy 7: the expected! state reward
vector r; € R", and the state transition matrix P, € R*"*", Below we indicate the values stored
in these objects at the indices induced by the state in parentheses.

ry(s) = Z w(als)r(s, a)

acA

P.(s,s) = Z m(als)P(s|s, a)

acA

(11)

INote that this means that we assume 7(s,a) returns the expected reward from using action a in state s; an
abuse of notation, where a truly articulate notation would be E[r(s,a)], which we do not use for the sake of
notational brevity.

The matrix form of the bellman equation for the state-value function defines vector v, € R™:

vr(s) =rx(s) +7 Z P (s,)va(s")
s'€S (12)

Ve ="z +vP,v,

Since v, is unknown, we have thus defined an “easily solvable” linear system of equations, where
the direct analytical solution for v is:

Vg — ’YP‘II'Vﬂ‘ =TIy
(In - FYPTr)VTr =TIz (13)
Vg = (In - ’YPTr)_lrﬂ’

4 Dynamic Programming

Dynamic programming assumes the environment’s dynamics are completely known. The linear
systems formulation of the prediction problem is oftentimes much too expensive since it involves
a matrix inverse of a large n X n matrix. Instead, we can iteratively perform policy evaluation
for 7, or prediction, directly using the bellman equations for state-value functions:

vE+1(8) Z m(als) <T(s, a) + Z P(s']s, a)vk(s’)> (14)
acA s’eS
This iterative algorithm is guaranteed to converge to the true v, as long as v < 1 or if the task
is guaranteed to terminate. This is called an expected update because the update is based on all
the successor states of s, all possible one-step transitions. This is why the backup diagram for
dynamic programming looks like a tree that extends from one state to all possible next states.
We can now define policy improvement, a piece to the control algorithm that seeks to discover
the optimal policy for the MDP. We will use our definition of the action-value function ¢ (s, a),
which models the expected value of a state given that we take action a, and then follow 7
afterwards. We can thus define the policy improvement theorem:

qr (5,7 (8)) > vr(5), Vs = vp(s) > va(s), Vs (15)

If this property is satisfied for a policy 7/, then 7’ is strictly better than w. Note that this is
defined with respect to the true value functions.

We define the greedy policy to be 7'(s) = argmax, ¢-(s,a). We now define policy iteration,
which will converge to the optimal policy of the MDP.

1. Randomly initialize 7
2. Use policy evaluation to compute v, (s) Vs
3. For each s € S:

© Store ayq to be 7(s)
o Update 7(s) + argmax, ¢ (s, a)

o If apq # 7(s), then we have not reached the optimal policy
4. If we have not reached the optimal policy, go back to 2

5. Otherwise, we converged to the optimal policy m = 7* and the optimal value function

4.1 Value Iteration

While the policy iteration algorithm works in theory, it is extremely expensive due to the sheer
quantity of policy evaluations it must do. We can optimize this significantly by combining policy
improvement and policy evaluation by basing our values on a greedy policy’s action, rather than
a stochastic policy’s distribution over actions. We thus define:

Vgpa1(8) < maxr(s,a) + 7 Z P(s'|s,a)vg(s") (16)
“ s'eS
If we run this iteration until the difference between updates is arbitrarily small, we will obtain
the optimal value function, and the optimal policy will be defined as the greedy policy over this
value function. This works due to its use of the greedy action with respect to itself; it updates
its values, which then updates its policy, which then will in turn update the values again, until
convergence is reached. This is a specific instance of generalized policy iteration (GPI).

5 Monte Carlo Methods

The characteristic features of Monte Carlo methods (MC) are: (1) they learn from sample ex-
perience, meaning they directly learn values without a model; and, (2) they do not bootstrap,
their value estimates are based on real returns, not on their other value estimates.

MC performs the prediction problem very simply. Given 7, generate an episode, starting
from Sy all the way to the final state Sp using actions obtained with 7. Then, update the values
of the states in reverse by accumulating the return at each step (G < G + r(st, a;)) and update
v(St) + average(G, PreviousReturns(St)). As the number of episodes approaches infinity, this
method is guaranteed to converge to the true v,, since each return is an IID estimate of v,.

The real difficulty with MC is in estimating action-values for the purpose of control. This is
because exploration can only really be imposed in the beginning of MC, where we use the method
of exploring starts. One way is to specify a GPI method, where we alternate between evaluation
and improvement episodically. That is, not only do we update the action-values in an analogous
way as with state-values (above), but also, after each update to the value of state S;, additionally
update the policy at Sy to be 7(S;) = argmax, q(St,a). If each state-action pair in S x A has
a nonzero probability of being selected to start from, we will be guaranteed to converge to the
optimal policy (in the limit to infinity).

5.1 On-Policy MC Control

Exploration can be imposed to learn more about the true values of the current policy (and then
improve it) by using e-soft policies, where the greedy action of the policy at state S, Af is given
probability m(A;, S¢) =1 —e+ 5, and all other actions a in S; receive probability m(a, S;) = =.
This is the simple way to ensure some sort of exploration in MC throughout its trajectory without
relying on exploring starts. Its disadvantage is that it weights all other actions equally, while some
may be known to be much worse than others; so, we’d instead like to take actions proportionally
to their estimated values, which can be done using Boltzmann exploration (not discussed here).

5.2 Off-Policy MC Prediction and Control

In off-policy learning, we seek to learn the values for a target policy 7, given behavior generated by
a behavior policy b. To do this, the coverage property must be satisfied: 7(als) >0 = b(a|s) >
0. Oftentimes, 7 is the deterministic greedy policy with respect to ¢, and b is a stochastic and
exploratory policy, such as e-greedy.

Off-policy methods require the use of importance sampling to be able to approximate the
values of m. We declare the following importance-sampling ratio:

Ak|5k
T | | 1
Pe:T—1 = b Ak|5k (7)

Given this ratio, we have two ways to approximate v,. Let T (s) be the set of all time steps
in which state s is visited, T'(¢) the first time of termination following time ¢, and G; the return
after ¢ up through 7T'(t). We thus define ordinary and weighted importance sampling.

v(s) Z pr:7(t)-1Gt

tGT(s)
pe1(t)—1Gt
ZtGT(s PeT(t)— te;(é)

(18)

v(s) =

Ordinary IS is unbiased, but has unbounded variance, meaning it is quite finicky to use in
practice. Weighted IS is biased, but has dramatically lower variance, making it much preferred
and easier to use, despite its inherent bias.

The action-value update using IS is defined below, from which we can easily define prediction
and control algorithms. Let f(p:.7—1) be a function that either converts p to weighted or ordinary
importance sampling. Note that, if an action a is selected by b such that 7(S¢,a) = 0, then
learning is halted for that episode, since p will be equal to zero from then down to the beginning
of time.

q(St, Ar) < q(St, At) + f(prr—1)[G — q(St, Ar)] (19)

6 Temporal-Difference Learning

TD learning is a central idea for RL. It is based on bootstrapping and sampling, combining the
two elements of DP and MC. The general update rule for 1-step TD (or, TD(0)) is:

v(Sp) = v(St) + a[r(St, Ar) + yv(Si41) — v(St)] (20)

This is directly related to the Bellman equation for an MDP, where the values are recursively
defined with respect to the values of other states. However, while the Bellman equation (and DP)
work with a sweep over all possible next states, TD only works with the next state generated by
experience, since it uses sampling and experience to learn and does not assume a model of the
MDP. TD(0) is distinct from MC in terms of what it is theoretically trying to do. MC attempts
to minimize the mean-squared error on the training set (its experience); TD(0), on the other
hand, finds estimates that would be exactly correct for the maximum-likelihood model of the
Markov process.

6.1 SARSA: On-policy Control

Given that our policy has generated the current state and action and the next state and action
(a quintiple, state-action-reward-state-action), we define the SARSA update as follows, where
after an update the policy is then derived from ¢ (possibly using e-greedy):

q(St, At) < q(St, A¢) + afr(Se, At) +vq(St1, Aer1) — q(St, Ar)] (21)

A variant of this algorithm, called Fzpected Sarsa, augments the update target to be as follows.
This eliminates the variance imposed by the random selection of A;q:

r(Se, Ar) + 7Y w(alSes1)a(Sev1, Aryr)

6.2 Q-Learning: Off-policy Control

This method directly approximates the optimal action-value function of the MDP, independent
of the behavior policy. We derive the behavior policy directly from ¢ after each update, possibly
using e-greedy.

q(Se, Ap) < q(Si, Ay) + afr(Se, Ay) + ’YmgXQ(StHa a) — q(St, Ar)] (22)

6.3 N-Step TD

We now generalize TD to account for the next n-steps, rather than just one step look-ahead.
Below we define the complete MC return of an episode that ends at time step T', G; the one-step
TD return, Gy.;41; and, the generalized n-step TD return Gy.p4p:

T
Gy =Y ¥ 'r(Sk, Ax)

=t
Gritr1 = r(St, At) + yve(Se41) (23)

n—1
Giign = <Z ’yk_tr(sk, Ak)) + Y Vt4n—1(St4n)
k=t

Note that, if ¢ +n >= T, then Gt.t1,, = G¢. The only difference between this and TD(0) is the
definition of the update target; in all the above algorithms, simply replacing the update target
with this Gy.¢4, is sufficient for converting them to N-step algorithms. Note that an off-policy
algorithm naturally needs to factor in the importance sampling ratios, if we are not using Q-
learning. N-step TD factors in more experience and has to wait longer before updating values;
this wait occurs because this approach encompasses the forward view of RL, that values should
be updated with respect to what will happen in the future.

6.4 TD())

TD(A) generalizes n-step TD to a nicer, more elegant algorithm. While n-step TD is equivalent
to basic one-step TD when n = 1, and MC when n = T, TD(\) offers a continuous formulation:
TD(X = 0) is equivalent to one-step TD, and TD(A = 1) is equivalent to MC. This algorithm is
more rigorously defined in the context of function approximation, whereas until now we have been
working in the tabular setting of RL. While tabular RL is in fact a specific instance of function
approximation (where feature vectors are simply one-hot encoding of states), it is necessary to
first elucidate function approximation before exploring this variant of TD.

7 Function Approximation

Let x(.S¢) = x; be a d-dimensional feature vector encoding of a state S;. There are many ways to
extract features from a state, but for now we assume this method is already defined. The purpose
of FA is to reduce the computational complexity of RL, since d << n; additionally, FA allows us

to generalize from experience in certain states to approximate the values of similar states. We
are considered with the case of linear FA in this section, where we seek to learn a weight vector
w such that the value of a state is defined:

v(S,w) = wlx, (24)

Note that the gradient of this value function with respect to the weights is simply the features;
i.e.,, Vu(Si, w) = x;. The general form of stochastic gradient descent for optimizing the linear
value function in RL is the following, where specific algorithms augment this update by offering
a definition of the update target Uy:

w— w+ a[U; — v(S,w)|x; (25)

MC defines U; = G, the return at the end of the episode. n-step TD defines Uy = G441, and
specifically 1-step TD defines Uy = (S, A¢) + yvi(Si+1, w). When U includes a bootstrapped
target, as with TD, we call this method a semi-gradient algorithm since it is not based on true
samples generated from the distribution, which is what is defined by stochastic gradient descent
(SGD). While MC is true SGD, it is typically much slower than TD since it takes so long to
update its values.

7.1 Closed-Form Solution to Linear TD(0)
With the update law defined above, consider a weight vector update at time ¢ + 1:

w1 = wy +a(r(S, A) + ywixi — thxt)xt
=W + Oé(T(Sn Ap)xy — xg(x¢ — ’YXt+1)TWt) (26)
=w;+ a(b— Awy)

Where b € R? and A € R¥*? are linear operators defined as the expectations of the quantities
they replace in the equation above them. With this fact, we find the closed form solution to the
TD fized point weight vector, which TD(0) ultimately converges to:

w=w+ a(b— Aw)
0=b—Aw (27)
w=A""b

7.2 TD())

We can now fully define TD(\). This algorithm encompasses a backward-view of RL, where
updates to the weight vector occur at each step of the algorithm, rather than waiting for a
certain amount of steps to be pursued. An eligibility trace vector z; = yAz;_1 + X, is defined,
where z_1 = 0. With TD error defined with the specific one-step TD error, but we will find
that this algorithm is not one-step due to its use of eligibility traces. The error is defined as
5t = r(St, Ap) + yv(St41, W) — v(St, wi). The updates for the entire algorithm become:

Z — YAz + Xy
d « 1(St, Ap) + yv(Spq1, W) — v(Sg, w) (28)
W W+ adz

10

The eligibility trace captures exactly the amount a state has contributed to the current trajectory
and thus the current error/reward attained. Over time, the vector accumulates all the states
visited in the trajectory, causing each update to update the value function’s weights with respect
to more and more of the states considered.

The forward view using n-step A returns redefines the return update target with the equation
to horizon h below. This is simply a way to augment n-step methods to account for not just the
last step, but to factor in all other steps k between 1 and n by a proportion factoring (1 — A)A.
n-step methods with FA suffer from the fact that they have to store all weight vectors between
time t and ¢+ n, and is neither interesting nor on par with the strength of the the backward-view.

h—t—1
Ghn=(1=N) > N 7'Grpyn + NGy 0<t<h<T
n=1
t+k—1 , (29)
=Glian = (S W)+ Y (W) THr(Sirr, Ayt +70(Sig1, wi) — v(Si, wi1))

i=t

7.3 Action-value Function Approximation

FA with action-values ¢(s, a) is nearly equivalent to the state-value FA already described, ex-
cept that it becomes necessary to define a feature vector representing both states and actions
combined. The methods for SARSA, Q-learning, and the rest can all be extended to this case
with obvious rewrites of their functions in terms of function approximation. Control is implicitly
performed whenever the weight vector is updated since it operates over the approximate state-
action value function and thus can modify the (e-)greedily selected action at each step, unlike in
prediction where a policy is assumed and the weight vector is only updated to modify the value
of states under the fixed policy.

11

