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Clustering-Oriented Representation Learning

Attractive & repulsive loss signals
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e Attractive and repulsive loss defined with similarity function s (h, w)

o Attractive seeks to maximize similarity between latent
representations (final hidden layer activations, h) and output
weight vectors (w) for their classes

o Repulsive seeks to minimize similarity between representations and
the output weights of other classes

e We propose losses based on two different similarity functions:

o Cosine-similarity loss [-1, 1]:
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Minimize distance to most similar class the sample does not belong to,
square to make vectors orthogonal (and not 180 degress)
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o Gaussian-similarity loss [0, 1]: L acr = 10OZ sgau(h(i), Wyz.)
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Using the intuitions of CCE and softmax, define the objective as
maximizing a univariate Gaussian PDF instead of a dot product

Sgau(h, W) =€

e With any similarity function, class prediction is:

prediction = argmax, s (h, wk)
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e We propose Clustering-Oriented Representation Learning (COREL) as a
general framework for designing loss functions in neural networks for
classification tasks. Essential components are:

1. Attractive & repulsive Loss signals

2. Similarity function between representations and weights

e We redefine categorical cross-entropy (CCE) as a specific case of
COREL, and propose two new loss functions in our framework, which
are better than CCE in terms of clusterability.

Reinterpreting Categorical Cross-Entropy

e (ategorical cross-entropy is defined as:
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e (COREL generalization redefines it generally with s, similarity function:
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Experiments

e Objectives:
a. Determine if the COREL losses can perform as well as CCE
b. Analyze the clusterability of the latent spaces
c. Oualitatively analyze the latent representions

e Test on MNIST, Fashion-MNIST, and AgNews datasets for
classification performance (only Fashion-MNIST results presented
here from CNN)

e Test unsupervised clustering algorithms (K-Means, Gaussian mixture
models) on test set representations, determining intrinsic expressivity

Below we look at smallest to largest norm for cosine-COREL representations.

Fashion-MNIST Prediction acc. K-Means acc. K-Means density
Test set results (sup.) (unsup.) (unsup.)

CCE 0.9124 0.7246 0.2808
Cosine COREL

(lambda = 0.15) 0.9092 0.9072 0.8473
Gaussian COREL

(lambda = 0.85) 0.9164 0.9127 0.7382
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