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“The purpose of 
abstraction is not to be 
vague, but to create a 
new semantic level in 
which one can be 
absolutely precise.”
Dijkstra



Neural Networks and Latent 
Representations

● What are the hidden layers in neural 

networks?

● Are they simply black boxes that magically 

solve problems, where we have no 

understanding of their internal workings?
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Neural Networks and Latent 
Representations

● What are the hidden layers in neural 

networks?

● Are they simply black boxes that magically 

solve problems, where we have no 

understanding of their internal workings?

● NO!
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Neural Networks and Latent 
Representations

● Hidden layers are supposed to disentangle 
the factors of variation in the data.

● They use nonlinear transformations to 

project the data onto a new space with 

properties imposed by the loss function.

● The parameters of these nonlinear 

transformations are learned with 
backpropagation.
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Neural Networks and 
Backpropagation

The usefulness of the hidden layers, and 

the properties they express, depends on 

the loss function used to train the 
network, the gradient of which is 

backpropagated through the network.
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Categorical Cross Entropy Loss

● Categorical Cross Entropy is the standard loss 
function of a network designed for classification.

● Whereas logistic regression attempts to linearly 
separate the data in the original feature space, CCE 
in MLPs directly imposes the quality that the data 
should be linearly separable in a new latent space.



Linear Separability and Non-linear 
Transformations 

See: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear Separation in Feature space, 
made by logistic regression. Not a 
perfect separation, and cannot be.

The linear separation in the learned 
latent space, the learned non-linear 
transformation of data.

Non-Linear Separation in Feature 
space, made by neural net. But, this is 
actually a reflection of -->

Same things, different views!

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/


Categorical Cross Entropy Loss

● Linear separability, in the latent space, is the 
fundamental geometric property expressed by CCE.

● My research questions:
○ Can we make the latent space more “interpretable” 

with a more geometrically motivated loss function?
○ Do we even need an output layer? Do we need linear 

separation to have a nice model?



Clusterability for Latent 
Representations

According to (Bengio et al., 2013), a desirable quality for 
our latent representations would be if they were 
naturally clusterable, that is that “different values of 
categorical variables such as object classes are 
associated with separate manifolds.”



Clustering like it’s 1957 (the year 
K-Means was theorized…)

● We would like impose “clusterability” with a new loss 
function, since CCE doesn’t do so (it only imposes 
linear separability).

● Let’s be like K-Means and use centroids!
● Not just any centroids, but latent categorical 

centroids...



Clustering like it’s 1957 (the year 
K-Means was theorized…)

Latent Categorical Centroids:

● Each class c gets a latent categorical centroid, Ec :
○ Ec  = (1/|C|) ∑ h(xi)  
○ For each sample xi in C; e.g., belonging to class C.

● In other words, Ec is the mean latent representation, 
h(x), over all samples, xi, for class c.



Clustering like it’s 2017…
With Neural Networks!

● Now, if we have K classes in our dataset, we can 
construct K centroids, E1, … EK, from our training set. 

● Now, how can we use these centroids in the loss 
function of a neural network, in order to impose the 
quality of “natural clustering”?



Centroid-Clustering Loss in 
Neural Networks

If the following two criteria hold, then the data will be 
easily clusterable (in the latent space):

● Centroid-Attraction: samples belonging to class C 
should be close to the centroid of class C.

● Centroid-Repulsion: samples NOT belonging to class 
C should be far away from the centroid of class C.



Centroid-Clustering Loss in 
Neural Networks

We can express these criteria with explicit loss functions 
that work over the latent space:

● Centroid-Attraction: minimize the distance between 
samples and the centroids of their classes.

● Centroid-Repulsion: maximize the distance between 
samples and the centroids of other classes.



Centroid-Clustering Loss: Measuring 
Distance

● How should we measure how “close” something is to 
something else? 
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Centroid-Clustering Loss: Measuring 
Distance

● How should we measure how “close” something is to 
something else? 

● If we are trying to maximize a distance, we probably 
need to use a distance function (measure of 
similarity) that does not diverge to infinity.

● So, no euclidean distance!



Centroid-Clustering Loss: Measuring 
Distance with Cosine Distance

● Let’s use cosine distance!
○ Half of 1 minus the cosine similarity between the 

vectors (cosine similarity is in [-1, 1]).



Centroid-Clustering Loss: Measuring 
Distance with Cosine Distance

● Let’s use cosine distance!
○ If cosd(u,v)=0 then they are oriented in same direction.
○ If cosd(u,v)=1 then they are in opposite directions.
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○ Magnitude invariant
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Centroid-Clustering Loss: Measuring 
Distance with Cosine Distance

● Let’s use cosine distance!
○ Computes the “angle between two vectors”
○ Magnitude invariant
○ Constrained between 0 and 1
○ Best understanding: measures the squared 

euclidean distance between two vectors when 
projected onto the unit hypersphere.



● “But cosine-distance is less expressive since it is 
magnitude invariant!” one might say...

Centroid-Clustering Loss: Measuring 
Distance with Cosine Distance



● “But cosine-distance is less expressive since it is magnitude 
invariant!” one might say…

● It is well known that, in high dimensional spaces, euclidean 
distance is not meaningful and actually problematic due to 
hypersensitivity to small perturbations.

● So, this property of cosine-distance may actually be desirable, 
may make it more expressive! (Charu et al., 2001) 

● But I’m open to suggestions for other distance metrics! 
Particularly ones that can be expressed in pure matrix form.

Centroid-Clustering Loss: Measuring 
Distance with Cosine Distance



● Note that, whatever distance function we choose, 
the model will learn non-linear transformations to 
manifest its properties as much as possible.

● So, perhaps, the distance function is not super 
decisive since the network will adapt to it regardless.

Centroid-Clustering Loss: Measuring 
Distance with Cosine Distance



Centroid-Clustering Loss in 
Neural Networks

Centroid-Attraction: minimize the distance between samples and the 
centroids of their classes.

Centroid-Repulsion: maximize the distance between samples and the 
centroids of other classes.



Centroid-based Inference in 
Neural Networks

Note, if the Centroid-Attraction and Centroid-Repulsion 
criteria hold, and if the model has properly generalized, 
then we do not need an output layer for our model.



Centroid-based Inference in 
Neural Networks

Note, if the Centroid-Attraction and Centroid-Repulsion 
criteria hold, and if the model has properly generalized, 
then we do not need an output layer for our model.

Instead, we predict that the class of a new sample, x, is 
the class of the training-set centroid to which it is 
closest. E.g., class(x) = argminc d(h(x), Ec)



Summary of our Clustering-Oriented 
Representation Learning Network

● No output layer, works at the level of representation
● Dynamically maintains representations of the classes, 

the latent categorical centroids 
● Uses clustering-oriented loss to optimize the network

○ Attract samples to their centroids
○ Repulse samples from other centroids

● Uses the centroids to perform inference



Experimental Design
(e.g., But does it work?)

We experiment with synthetic data to isolate model 
design from the specificities of working with real 
datasets.

● 3,400 training samples, 600 validation, 1000 test
● 1000 features per sample
● 10 classes





Dataset

Very hard! Very much not linearly 
separable! 

Lots of noise!

Logistic regression only gets 20% accuracy!

SVM with RBF kernel (with highly tuned C) 
only gets 63% accuracy!



Experiments

If our Centroid-Clustering loss is good, then the model 
trained with it should:

● Be better than other models
● Really should be better than a CCE feed-forward 

neural network



Parameter Tuning

Tested several thousand different neural network 
architecture variants for our model, including:

● Activation functions (Tanh, ReLU, LeakyReLU, PreLU…)
● Batch size (100, 340, 1700, 3400)
● Learning rate (many)
● Number and dimensionality of hidden layers (very 

many)





Parameter Tuning - Results

For our Centroid-based network, we found the following 
parameter settings were very important for obtaining 
optimal validation set accuracy:

● Using LeakyReLU, not ReLU (and definitely not Tanh!)
● Testing different variants of bottleneck networks, 3 

layers worked quite well
○ E.g., Layer sizes [1000 -> 2048 -> 128 -> 4096]



Final Test Set Results



Learning to Cluster - Centroid Net



Norm of Gradient Over Time - Centroid Net



Learning to Cluster - CCE Net



Centroid Changes - Centroid Net



Centroid Changes during Training



Centroid Changes - Centroid Net



Learning to Predict - CCE Network



Learning to Predict - Centroid Network



Accuracy Over Time - CCE Network



Accuracy Over Time - Centroid Network



Norm of Gradient Over Time - CCE Net



Norm of Weights Over Time - CCE Net



Norm of Weights Over Time - Centroid Net



Norm of Reps. over time - CCE Net



Norm of Reps. over time - Centroid Net
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How did I do this project? 
https://github.com/kiankd/nets

● Was it by:
○ Not commenting my code?
○ Not using “for loops”?
○ Not making separate files?
○ Not writing classes?
○ Handwriting the results of experiments on some 

scrap paper?

https://github.com/kiankd/nets


How did I do this project? 
https://github.com/kiankd/nets
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How did I do this project? 
https://github.com/kiankd/nets

● Surprise: I did the exact opposite of those things!
● My philosophy when doing research is:

○ Why not be more lazy?
○ Programmers are lazy - if you want to do less 

work and have an easier life, write generalized 
code!

https://github.com/kiankd/nets






Principles for Good Research Practices

● Write generalized code using OOP.
● Use multiple files and classes to separate tasks.
● Code it like you will use it in the future.
● Save your results every time you get them!



Principles for Good Research Practices

● Write generalized code using OOP.
● Use multiple files and classes to separate tasks.
● Code it like you will use it in the future.
● Save your results every time you get them!

● USE VERSION CONTROL! (e.g., Github)
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