
Clustering-Oriented
Representation
Learning in Neural
Networks

Kian Kenyon-Dean, M.Sc.
Supervised by Jackie Cheung & Doina Precup

“The purpose of
abstraction is not to be
vague, but to create a
new semantic level in
which one can be
absolutely precise.”
Dijkstra

Neural Networks and Latent
Representations

● What are the hidden layers in neural

networks?

● Are they simply black boxes that magically

solve problems, where we have no

understanding of their internal workings?

Input Layer

Hidden
Layer 1

Hidden
Layer 2

Output Layer

Neural Networks and Latent
Representations

● What are the hidden layers in neural

networks?

● Are they simply black boxes that magically

solve problems, where we have no

understanding of their internal workings?

● NO!

Input Layer

Hidden
Layer 1

Hidden
Layer 2

Output Layer

Neural Networks and Latent
Representations

● Hidden layers are supposed to disentangle
the factors of variation in the data.

● They use nonlinear transformations to

project the data onto a new space with

properties imposed by the loss function.

● The parameters of these nonlinear

transformations are learned with
backpropagation.

Input Layer

Hidden
Layer 1

Hidden
Layer 2

Output Layer

Neural Networks and
Backpropagation

The usefulness of the hidden layers, and

the properties they express, depends on

the loss function used to train the
network, the gradient of which is

backpropagated through the network.

Input Layer

Hidden
Layer 1

Hidden
Layer 2

Output Layer

∇L(x)

Categorical Cross Entropy Loss

● Categorical Cross Entropy is the standard loss
function of a network designed for classification.

● Whereas logistic regression attempts to linearly
separate the data in the original feature space, CCE
in MLPs directly imposes the quality that the data
should be linearly separable in a new latent space.

Linear Separability and Non-linear
Transformations

See: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear Separation in Feature space,
made by logistic regression. Not a
perfect separation, and cannot be.

The linear separation in the learned
latent space, the learned non-linear
transformation of data.

Non-Linear Separation in Feature
space, made by neural net. But, this is
actually a reflection of -->

Same things, different views!

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Categorical Cross Entropy Loss

● Linear separability, in the latent space, is the
fundamental geometric property expressed by CCE.

● My research questions:
○ Can we make the latent space more “interpretable”

with a more geometrically motivated loss function?
○ Do we even need an output layer? Do we need linear

separation to have a nice model?

Clusterability for Latent
Representations

According to (Bengio et al., 2013), a desirable quality for
our latent representations would be if they were
naturally clusterable, that is that “different values of
categorical variables such as object classes are
associated with separate manifolds.”

Clustering like it’s 1957 (the year
K-Means was theorized…)

● We would like impose “clusterability” with a new loss
function, since CCE doesn’t do so (it only imposes
linear separability).

● Let’s be like K-Means and use centroids!
● Not just any centroids, but latent categorical

centroids...

Clustering like it’s 1957 (the year
K-Means was theorized…)

Latent Categorical Centroids:

● Each class c gets a latent categorical centroid, Ec :
○ Ec = (1/|C|) ∑ h(xi)
○ For each sample xi in C; e.g., belonging to class C.

● In other words, Ec is the mean latent representation,
h(x), over all samples, xi, for class c.

Clustering like it’s 2017…
With Neural Networks!

● Now, if we have K classes in our dataset, we can
construct K centroids, E1, … EK, from our training set.

● Now, how can we use these centroids in the loss
function of a neural network, in order to impose the
quality of “natural clustering”?

Centroid-Clustering Loss in
Neural Networks

If the following two criteria hold, then the data will be
easily clusterable (in the latent space):

● Centroid-Attraction: samples belonging to class C
should be close to the centroid of class C.

● Centroid-Repulsion: samples NOT belonging to class
C should be far away from the centroid of class C.

Centroid-Clustering Loss in
Neural Networks

We can express these criteria with explicit loss functions
that work over the latent space:

● Centroid-Attraction: minimize the distance between
samples and the centroids of their classes.

● Centroid-Repulsion: maximize the distance between
samples and the centroids of other classes.

Centroid-Clustering Loss: Measuring
Distance

● How should we measure how “close” something is to
something else?

Centroid-Clustering Loss: Measuring
Distance

● How should we measure how “close” something is to
something else?

● If we are trying to maximize a distance, we probably
need to use a distance function (measure of
similarity) that does not diverge to infinity.

Centroid-Clustering Loss: Measuring
Distance

● How should we measure how “close” something is to
something else?

● If we are trying to maximize a distance, we probably
need to use a distance function (measure of
similarity) that does not diverge to infinity.

● So, no euclidean distance!

Centroid-Clustering Loss: Measuring
Distance with Cosine Distance

● Let’s use cosine distance!
○ Half of 1 minus the cosine similarity between the

vectors (cosine similarity is in [-1, 1]).

Centroid-Clustering Loss: Measuring
Distance with Cosine Distance

● Let’s use cosine distance!
○ If cosd(u,v)=0 then they are oriented in same direction.
○ If cosd(u,v)=1 then they are in opposite directions.

Centroid-Clustering Loss: Measuring
Distance with Cosine Distance

● Let’s use cosine distance!
○ Computes the “angle between two vectors”
○ Magnitude invariant
○ Constrained between 0 and 1

Centroid-Clustering Loss: Measuring
Distance with Cosine Distance

● Let’s use cosine distance!
○ Computes the “angle between two vectors”
○ Magnitude invariant
○ Constrained between 0 and 1
○ Best understanding: measures the squared

euclidean distance between two vectors when
projected onto the unit hypersphere.

● “But cosine-distance is less expressive since it is
magnitude invariant!” one might say...

Centroid-Clustering Loss: Measuring
Distance with Cosine Distance

● “But cosine-distance is less expressive since it is magnitude
invariant!” one might say…

● It is well known that, in high dimensional spaces, euclidean
distance is not meaningful and actually problematic due to
hypersensitivity to small perturbations.

● So, this property of cosine-distance may actually be desirable,
may make it more expressive! (Charu et al., 2001)

● But I’m open to suggestions for other distance metrics!
Particularly ones that can be expressed in pure matrix form.

Centroid-Clustering Loss: Measuring
Distance with Cosine Distance

● Note that, whatever distance function we choose,
the model will learn non-linear transformations to
manifest its properties as much as possible.

● So, perhaps, the distance function is not super
decisive since the network will adapt to it regardless.

Centroid-Clustering Loss: Measuring
Distance with Cosine Distance

Centroid-Clustering Loss in
Neural Networks

Centroid-Attraction: minimize the distance between samples and the
centroids of their classes.

Centroid-Repulsion: maximize the distance between samples and the
centroids of other classes.

Centroid-based Inference in
Neural Networks

Note, if the Centroid-Attraction and Centroid-Repulsion
criteria hold, and if the model has properly generalized,
then we do not need an output layer for our model.

Centroid-based Inference in
Neural Networks

Note, if the Centroid-Attraction and Centroid-Repulsion
criteria hold, and if the model has properly generalized,
then we do not need an output layer for our model.

Instead, we predict that the class of a new sample, x, is
the class of the training-set centroid to which it is
closest. E.g., class(x) = argminc d(h(x), Ec)

Summary of our Clustering-Oriented
Representation Learning Network

● No output layer, works at the level of representation
● Dynamically maintains representations of the classes,

the latent categorical centroids
● Uses clustering-oriented loss to optimize the network

○ Attract samples to their centroids
○ Repulse samples from other centroids

● Uses the centroids to perform inference

Experimental Design
(e.g., But does it work?)

We experiment with synthetic data to isolate model
design from the specificities of working with real
datasets.

● 3,400 training samples, 600 validation, 1000 test
● 1000 features per sample
● 10 classes

Dataset

Very hard! Very much not linearly
separable!

Lots of noise!

Logistic regression only gets 20% accuracy!

SVM with RBF kernel (with highly tuned C)
only gets 63% accuracy!

Experiments

If our Centroid-Clustering loss is good, then the model
trained with it should:

● Be better than other models
● Really should be better than a CCE feed-forward

neural network

Parameter Tuning

Tested several thousand different neural network
architecture variants for our model, including:

● Activation functions (Tanh, ReLU, LeakyReLU, PreLU…)
● Batch size (100, 340, 1700, 3400)
● Learning rate (many)
● Number and dimensionality of hidden layers (very

many)

Parameter Tuning - Results

For our Centroid-based network, we found the following
parameter settings were very important for obtaining
optimal validation set accuracy:

● Using LeakyReLU, not ReLU (and definitely not Tanh!)
● Testing different variants of bottleneck networks, 3

layers worked quite well
○ E.g., Layer sizes [1000 -> 2048 -> 128 -> 4096]

Final Test Set Results

Learning to Cluster - Centroid Net

Norm of Gradient Over Time - Centroid Net

Learning to Cluster - CCE Net

Centroid Changes - Centroid Net

Centroid Changes during Training

Centroid Changes - Centroid Net

Learning to Predict - CCE Network

Learning to Predict - Centroid Network

Accuracy Over Time - CCE Network

Accuracy Over Time - Centroid Network

Norm of Gradient Over Time - CCE Net

Norm of Weights Over Time - CCE Net

Norm of Weights Over Time - Centroid Net

Norm of Reps. over time - CCE Net

Norm of Reps. over time - Centroid Net

References

(Bengio et al., 2013) - Bengio, Yoshua, Aaron Courville, and Pascal Vincent. "Representation
learning: A review and new perspectives." IEEE transactions on pattern analysis and machine
intelligence 35.8 (2013): 1798-1828.

(Charu et al., 2001) - Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. “On the
surprising behavior of distance metrics in high dimensional spaces”. In: ICDT. Vol. 1. Springer.
2001, pp. 420–434.

How did I do this project?
https://github.com/kiankd/nets

https://github.com/kiankd/nets

How did I do this project?
https://github.com/kiankd/nets

● Was it by:
○ Not commenting my code?

https://github.com/kiankd/nets

How did I do this project?
https://github.com/kiankd/nets

● Was it by:
○ Not commenting my code?
○ Not using “for loops”? Not declaring variables?

https://github.com/kiankd/nets

How did I do this project?
https://github.com/kiankd/nets

● Was it by:
○ Not commenting my code?
○ Not using “for loops”?
○ Not making separate files?

https://github.com/kiankd/nets

How did I do this project?
https://github.com/kiankd/nets

● Was it by:
○ Not commenting my code?
○ Not using “for loops”?
○ Not making separate files?
○ Not writing classes?

https://github.com/kiankd/nets

How did I do this project?
https://github.com/kiankd/nets

● Was it by:
○ Not commenting my code?
○ Not using “for loops”?
○ Not making separate files?
○ Not writing classes?
○ Handwriting the results of experiments on some

scrap paper?

https://github.com/kiankd/nets

How did I do this project?
https://github.com/kiankd/nets

● Surprise: I did the exact opposite of those things!
● My philosophy when doing research is:

○ Why not be more lazy?

https://github.com/kiankd/nets

How did I do this project?
https://github.com/kiankd/nets

● Surprise: I did the exact opposite of those things!
● My philosophy when doing research is:

○ Why not be more lazy?
○ Programmers are lazy - if you want to do less

work and have an easier life, write generalized
code!

https://github.com/kiankd/nets

Principles for Good Research Practices

● Write generalized code using OOP.
● Use multiple files and classes to separate tasks.
● Code it like you will use it in the future.
● Save your results every time you get them!

Principles for Good Research Practices

● Write generalized code using OOP.
● Use multiple files and classes to separate tasks.
● Code it like you will use it in the future.
● Save your results every time you get them!

● USE VERSION CONTROL! (e.g., Github)

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

