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Why do we want distributed representations?
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Why do we want distributed representations?

Motivated by the distributional hypothesis (Harris, 1954):

You shall know a word by the company it keeps. (Firth, 1957)

- Words with similar distributions will have similar meanings

- Words that appear in similar contexts have similar meanings
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Language Modelling

Here, we would like to model the probability of a word given the previous sequence. This practically 

requires us to limit to the previous m words in the sequence.
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Language Modelling

We would like to model the probability of a word given the previous sequence. This practically requires 

us to limit to the previous m words in the sequence.

Traditional methods are count-based; e.g., for trigrams: 

Problems: many sequences will have 0 probability (requires not great smoothing techniques),                      

no generalization for semantically similar words, depends on Markov assumption (no longer than m 

dependency understanding).
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Neural Language Modelling

Solution: represent words as continuous vectors in Rm, m << |V|.

● Learn vectors by building an NNLM (neural network 

language model)

● Objective: predict P(wt = i | context words)
● i.e., map a sequence wt-n+1, …, wt-1 to predict the 

probability that wt is word i
● Key: represent words with vectors C(i) for word i
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Neural Language Modelling

Solution: represent words as continuous vectors in Rm, m << |V|.

● Learn vectors by building an NNLM (neural network 

language model)

● Objective: predict P(wt = i | context words)
● i.e., map a sequence wt-n+1, …, wt-1 to predict the 

probability that wt is word i
● Key: represent words with vectors C(i) for word i

A feed-forward NNLM will concatenate the 
fixed number of context vectors.

A recurrent NNLM uses an RNN to pool the 
vectors, thus incorporating word order.
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Neural Language Modelling

Characteristics & Problems

● Softmax output layer is huge! |V| output neurons!
● Feed-forward NNLM requires fixed context length:

○ No generalization across words in different positions on 
the parameters of the model;

○ Takes a long time to train (weeks!)
■ Bengio 2003: 3 weeks on 40 CPUs!

● Recurrent NNLM generalizes model parameters
○ Difficult to train, chaotic dynamical system
○ But, is faster to train than FFNN
○ Generally performs better than FFNN
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Matrix Factorization

● Global method to build low-rank approximations of a massive matrix of word 

co-occurence statistics in a corpus.

● Includes methods:
○ LSA (latent semantic analysis)

■ Word-document matrix. M
ij
 = # times word i appears in document j

○ HAL (hyperspace analogue to language)
■ Word-word matrix. M

ij
 = # times word i appears in some local context of another word j

○ [H]PCA (Hellinger principal component analysis)
■ PCA is a common method to factorize a matrix into smaller vectors.
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Matrix Factorization 

● Begin with matrix M with dimensions |V| x |D|
○ D is the set of context words that we care about (often just the vocabulary V)

● Define M
ij
 in some clever way:

○ E.g., M
ij
 = P(word j in “context of” word i); count this in training corpus

○ Can make it PPMI: divide by P(i)*P(j)

● Learn a set of |V| vectors V and |D| “context vectors” W with an objective function

○ Base form: v
i
 * w

j
 = log(M

ij
)

● Learning is done with matrix factorization algorithm
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Matrix Factorization 

● Begin with matrix M with dimensions |V| x |D|
○ D is the set of context words that we care about (often just the vocabulary V)

● Define M
ij
 in some clever way:

○ E.g., M
ij
 = P(word j in “context of” word i)

○ Can make it PPMI: divide by P(i)*P(j)

● Learn matrix of word vectors V (|V|x d) and “context vectors” W (d x |D|) with objective function

○ Base form: v
i
 * w

j
 = log(M

ij
)

● Learning is done with matrix factorization algorithm for factorizing: log(M) = VW
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Word2vec - Skipgram & CBOW

● Expressed as an online neural learner trained to 

maximize the log-likelihood of the context given 
word, for Skip-gram (vice versa for CBOW)

● But is actually “log-linear”, no nonlinear 

projection layer (unlike NNLMs)

● Linear makes sense: using a nonlinear neural 

network “would obfuscate the linear structure we 
are trying to capture” [Glove paper]
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Word2vec - Skipgram & CBOW

Unique characteristics

● Online learner, much much faster than NNLMs

● Uses negative sampling in the softmax

● Uses hierarchical softmax in the objective

● Subsamples frequent words to avoid pollution

● CBOW: predict word given context
● Skip-gram: predict context given word
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Word2vec - Skipgram & CBOW

Evaluation in the Papers
● All evaluations were on semantic and syntactic 

word analogy tasks & sentence completion

● They do better than NNLMs!

● No downstream task evaluations!

Skip-gram vs CBOW
● CBOW: faster to train, slightly better on syntax
● Skip-gram: better on infrequent words and better 

for semantic relationships
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● While Word2vec is presented as a local context-window approach, these authors proved that it 

really is optimizing a global objective function for approximating corpus statistics.

Glove - “Global Vectors”

30



● While Word2vec is presented as a local context-window approach, these authors proved that it 

really is optimizing a global objective function for approximating corpus statistics.
● Glove approximates global corpus statistics directly:

○ X
ij
 = # of times j occurs in context of i

○ Learn vectors and covectors (as word2vec)

Glove - “Global Vectors”

31



● While Word2vec is presented as a local context-window approach, these authors proved that it 

really is optimizing a global objective function for approximating corpus statistics.
● Glove approximates global corpus statistics directly:

○ X
ij
 = # of times j occurs in context of i

○ Learn vectors and covectors (as word2vec)

○ Real objective:

■ vi * vj = log Xij

● So, the dot-product between two vectors should equal the log of their co-occurence.

Glove - “Global Vectors”

32



● While Word2vec is presented as a local context-window approach, these authors proved that it 

really is optimizing a global objective function for approximating corpus statistics.
● Glove approximates global corpus statistics directly:

○ X
ij
 = # of times j occurs in context of i

○ Learn vectors and covectors (as word2vec)

○ Real objective:

■ vi * vj = log Xij

● So, the dot-product between two vectors should equal the log of their co-occurence.
● So, there is no mystery in word embeddings - they are optimized to measure frequency!

Glove - “Global Vectors”
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Fasttext - “Vectors with Subword Information”

● Also by Mikolov (this time, Facebook)

● Capture morphology: allows for rare words to be represented more confidently based on n-grams 

from n=3 to 6.

● Simply use Skip-gram as well as Word2vec, no real differences in learning model
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Problems with these Word Embeddings

- No differentiation between conceptual similarity and semantic similarity!
- No semantic/syntactic relations other than measuring corpus co-occurence are directly imposed!

- Inability to capture/represent polysemy (no solutions for this presented today)
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Retrofitting (Faruqui et al., NAACL 2015)

● A post-processing step to augment pre-trained 
word embeddings.

● Main idea: use an ontology (i.e.., an undirected 

graph) to encode semantic relations that should 

be captured by your word embeddings.

○ Ontology: e.g., Wordnet, defining a graph 

with vertices as words, edges as relations
○ Semantic relation: anything you want to 

represent - synonymy, hyponymy, “is bigger 

than”-omy ...
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word embeddings.

● Main idea: use an ontology (i.e.., an undirected 

graph) to encode semantic relations that should 

be captured by your word embeddings.

○ Ontology: e.g., Wordnet, defining a graph 

with vertices as words, edges as relations
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Retrofitting (Faruqui et al., NAACL 2015)
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Retrofitting (Faruqui et al., NAACL 2015)
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New 
embeddings

1. Retain old 
structure (be 
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the new 
embeddings



Retrofitting (Faruqui et al., NAACL 2015)
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Retrofitting (Faruqui et al., NAACL 2015)
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Results & comments

● Improved results for Glove and Skip-gram embeddings for instrisic evaluation
○ E.g., semantic and syntactic analogies

● Marginal improvements in one downstream task - sentiment analysis (+1%)



Retrofitting (Faruqui et al., NAACL 2015)
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Results & comments

● Improved results for Glove and Skip-gram embeddings for instrisic evaluation
○ E.g., semantic and syntactic analogies

● Marginal improvements in one downstream task - sentiment analysis (+1%)

● Only factors in similarity! 

○ All semantic relations are encoded and optimized in the same way: minimize the 
squared euclidean distance between their vectors

● Only is undirected!

○ What about directed relations - hyper/hyponymy, etc.?



Counterfitting (Mrkšić et al., NAACL 2016)

● Extension of retrofitting

● Model synonymy and antonymy
● Works on level of cosine similarity, not 

euclidean distance.

○ Attract synoynyms together;

○ Repulse antonyms from each other;

○ Preserve the semantic information of 

original vectors as much as possible.
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Counterfitting (Mrkšić et al., NAACL 2016)

Results & Commentary
● Only evaluated on an intrinsic evaluation

○ But improves performance on it

○ A dataset with 0.67 annotator 

agreement, they get 0.74 score...

● Reveals that distributional hypothesis is 

problematic because it will tend to 

conflate semantic similarity with 

conceptual association
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Functional Retrofitting (COLING 2018, Lengerich et al.)

● Generalize retrofitting & counterfitting!

● Encode directed relations in any 

knowledge graph!

● Represent & model any type of relation, 

without a priori knowledge
○ Learns the parameters of a 

semantic relation!

○ No longer impose everything to be 

similar!
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Functional Retrofitting (COLING 2018, Lengerich et al.)

● Given a knowledge graph with directed edges of any kind of relations encoded:

○ G = (V, E) s.t. nodes i are words, and all edges e = (i, j, r) defines a specific directed relation link r 
between two words i and j

● Objective: augment set of word embeddings to represent and learn how to represent the relations in G
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● Main idea: learn the relations as functions, simultaneously 
with learning the embeddings!

● Relations can have different parameterizations:

○ Linear - learn Ar and br

○ “Neural” - learn Ar

Functional Retrofitting (COLING 2018, Lengerich et al.)
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● Main idea: learn the relations as functions, simultaneously 
with learning the embeddings!

● Relations can have different parameterizations:

○ Linear - learn Ar and br

○ “Neural” - learn Ar

Functional Retrofitting (COLING 2018, Lengerich et al.)
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If Ar = I and br = 0, we have the 
original retrofitting method of 

Faruqui et al. 2015!

If Ar = -I and br = 0, we (more 
or less) have counterfitting!

What will the representations of 
the learned functional relations 

look like? Future work.



Results & Commentary
● Many experiments were done using relations from Framenet and Wordnet

○ Evaluated on link prediction on the knowledge graphs

○ Linear and Neural seem better than baselines

○ This is an intrinsic evaluation on how well embeddings capture what they’re trained for

● Very interesting proposal, but presented results are not very interesting!

○ What is the character of the learned relations?

■ E.g., how do learned hypo/hypernymy and syn/antonymy relations differ in weights?

■ Do they make sense?

○ Does this improve performance for downstream tasks?
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Problems with Evaluating Word Embeddings

REPEVAL 2016 - workshop on word representations, many influential papers
● Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance, Chiu et al.

○ Intrinsic evaluation = analogy questions (“man is to woman as king is to ___”), word similarity 

problems, 8 datasets tested

○ Zero (or negative correlation) between intrinsic performance and downstream performance on 

POS-tagging, NER, and chunking

■ Except on SimLex-999, high correlation!

■ Likely because SimLex-999 distingustishes between conceptual relatedness and 

semantic similarity. E.g., (film, cinema) = related, not similar; (male, man) = both

● Problems with Evaluation of Word Embeddings Using Word Similarity Tasks, Faruqui et al.

○ Review of the problems of these datasets, discuss the problems of polysemy, subjectivity of 
“similarity”, low correlation with extrinsic, frequency problems of embeddings
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Frequency “Pollution” in Word Embeddings

Translation: “words tend to be surrounded in the 

embedding space by words with similar frequencies in 

the corpus they are trained upon.”
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Hubness “Pollution” in Word Embeddings

In a KNN graph of an embedding space, there exist hubs, words that are the nearest neighbor to many 
many other words - often tend to be names and helping words (“really”, “anyway”, etc.)
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Different methods, summary

● Matrix factorization: if you want to be super mathematical and make proofs

● Neural language models: if you want to spend a lot of time and obfuscate linearity (shouldn’t do this)

● Word2vec, CBOW: need good syntactic representations, need fast training

● Word2vec, Skip-gram: need good semantic representations, need good representations of rare words
● Glove: need good, well-rounded representations  -- great default embeddings

● Fasttext: have lots of morphological data, need to capture this well

● Retrofitting: need to capture basic features of a knowledge graph in your embeddings

● Counterfitting: need to capture synonymy and antonymy explicitly in your embeddings

● Functional retrofitting: need to capture complex features of a knowledge graph with many relations
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Thank you!

- Kian

64


