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What the heck is a word embedding?

A distributed vector representation of a word.

A mapping from a one-hot-encoded space to a
much lower dimensional continuous space.
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What the heck is a word embedding?

A distributed vector representation of a word.

e A mapping from a one-hot-encoded space to a
much lower dimensional continuous space.

Discrete
representations

e Avocabulary or dictionary is really a
one-hot-encoded vector space.

Continuous
representations

Apple [1,0,0,0,0...]
Frog [0,1,0,0,0...]
Tomato [0,0,1,0,0...]
Potato == [0,0,0,1,0...]
Embedding
Algorithm
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Why do we want distributed representations?

e One-hot representations have no linear expressivity!
o Eg,cos([cat], [dog]) == cos([water], [hedgefund])

e Waytoo large to be practical - dimensionality is size of vocabulary!

e The curse of dimensionality is resolved (Bengio et al, 2003)
o Distributed representations offer local smoothness properties, which can
generalize a language model over syntactically/semantically related words.
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Why do we want distributed representations?

e One-hot representations have no linear expressivity!

O

E.g.,cos([cat], [dog]) == cos([water], [hedgefund])

e Waytoo large to be practical - dimensionality is size of vocabulary!

e The curse of dimensionality is resolved (Bengio et al, 2003)

O

Distributed representations offer local smoothness properties, which can
generalize a language model over syntactically/semantically related words.
Otherwise, to model a joint distribution of 10-word sentences in a language with

vocabulary size 100,000, there are 10°° free parameters!
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Why do we want distributed representations?
Motivated by the distributional hypothesis (Harris, 1954):
You shall know a word by the company it keeps. (Firth, 1957)

Words with similar distributions will have similar meanings
Words that appear in similar contexts have similar meanings
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Language Modelling

Here, we would like to model the probability of a word given the previous sequence. This practically
requires us to limit to the previous m words in the sequence.

p(Wn |W1r War ™5 Wn—l) ~ p(Wn IWn—m» "2 Wi~ Wn—l)
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Here, we would like to model the probability of a word given the previous sequence. This practically
requires us to limit to the previous m words in the sequence.

p(Wn |W1r War ™5 Wn—l) ~ p(Wn IWn—m» "2 Wi~ Wn—l)
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Problems: many sequences will have 0 probability (requires not great smoothing techniques),
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Language Modelling

We would like to model the probability of a word given the previous sequence. This practically requires
us to limit to the previous m words in the sequence.

p(Wn IWI' Wy, Wn—l) ~ p(WnIWn—m» "2 Wi~ Wn—l)

count(wy,w,,w3)

Traditional methods are count-based; e.g., for trigrams: p (W |W w ) —
3 1y ¥%2 y
w count(wq,wo,w)

Problems: many sequences will have O probability (requires not great smoothing techniques),
no generalization for semantically similar words, depends on Markov assumption (no longer than m
dependency understanding).
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Neural Language Modelling

Solution: represent words as continuous vectors in R™, m << |V/|.

e Learnvectors by building an NNLM (neural network
language model)

e Obijective: predict P(wt = j | context words)

e i.e,map aseqguence W, g W, O predict the
probability that w, is word i

e Key: represent words with vectors C(i) for word i

i-th output = P(w, = i context)
softmax
(XX S [ X ] [ XX D)
/ P4
’ 7
’ ¢ most| computation here

Ee (. . -
Table - .. Matrix C
look=up | Tmereeseeseesssenienasiveninniinaineanae
.OOC b shared parameters
= across words
index for W/ —n+1 index for w,_» index for w,_,
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A feed-forward NNLM will concatenate the
fixed number of context vectors.

A recurrent NNLM uses an RNN to pool the

N eu ral Lang uag e M Odelli ng vectors, thus incorporating word order.

i-th output = P(w, = i | context)

Solution: represent words as continuous vectors in R™, m << |V/|. L sofimax S
e Learnvectors by building an NNLM (neural network most| computation here \\\
language model) 4
e Objective: predict P(w, = i | context words) ', :. — E
e i.e,map aseqguence W, g W, O predict the ; :
probability that w,is word i '.| / \
e Key: represent words with vectors C(i) for word i o/ Cowia)  Clwir)
(o 0 ) (oo -
T Phensnsnsamniiy s S 1
inC s
index for Wy_ns1 index for w,_» index for 1w,
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Neural Language Modelling

i-th output = P(w, = i | context)
Characteristics & Problems softmax
(eoo [ X ] [ XX D)
x 7 ™
e Softmax output layer is huge! |V| output neurons! > J e La b I
e Feed-forward NNLM requires fixed context length: \‘
o  No generalization across words in different positions on ’,' i P :
the parameters of the model; i ;
o  Takes along time to train (weeks!) :
= Bengio 2003: 3 weeks on 40 CPUs! C( o)

(.Q .] (..---

% .. Matrix C
shared paramcters
across words

index for W/ —n+1 index for w,_» index for w,_,

Table
look—up
inC



Neural Language Modelling

i-th output = P(w, = i | context)
Characteristics & Problems softmax
[ X0 [ X ] 000 )
II // \\
e Softmax output layer is huge! |V| output neurons! o | motloompuion e, Y
I, ,’ “
I 1 1
! 1 1
! 1 1
f , Ceee 0
1
1
1
||
C(Wi—n+ (wi—2)  C(w=1)

(.Q .] (..---

% .. Matrix C
shared paramcters
across words

index for w,_,

Recurrent NNLM generalizes model parameters
o Difficult to train, chaotic dynamical system T:(l:ll(e_up
o  But,isfaster to trainthan FFNN inC
o  Generally performs better than FFNN . D o



Matrix Factorization

e Global method to build low-rank approximations of a massive matrix of word
co-occurence statistics in a corpus.
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Matrix Factorization

e Global method to build low-rank approximations of a massive matrix of word
co-occurence statistics in a corpus.

e Includes methods:
o LSA (latent semantic analysis)
m  Word-document matrix. Mij = # times word i appears in document j
o  HAL (hyperspace analogue to language)
m  Word-word matrix. Mij = # times word i appears in some local context of another word j
o [H]PCA ([Hellinger] principal component analysis)
m  PCAisacommon method to factorize a matrix into smaller vectors.
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Matrix Factorization

e Begin with matrix M with dimensions |V| x |D|
o  Disthe set of context words that we care about (often just the vocabulary V)

e Define Mij in some clever way:
o E.g, Mij = P(word j in “context of” word i); count this in training corpus
o Can make it PPMI: divide by P(i)*P(j)
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Matrix Factorization

e Begin with matrix M with dimensions |V| x |D|
o  Disthe set of context words that we care about (often just the vocabulary V)
e Define Mij in some clever way:
o Eg, Mij = P(word j in “context of” word i)
o Canmake it PPMI: divide by P(i)*P(j)
e Learn matrix of word vectors V (|V|x d) and “context vectors” W (d x |D|) with objective function
o Baseform:v.* w, = log(M.))

ij
e Learningis done with matrix factorization algorithm for factorizing: log(M) = VW
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Word2vec - Skipgram & CBOW

e Expressed as an online neural learner trained to
maximize the log-likelihood of the context given
word, for Skip-gram (vice versa for CBOW)

e Butis actually “log-linear”, no nonlinear
projection layer (unlike NNLMs)

e Linear makes sense: using a nonlinear neural
network “would obfuscate the linear structure we
are trying to capture” [Glove paper]
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Word2vec - Skipgram & CBOW

Unique characteristics

Online learner, much much faster than NNLMs
Uses negative sampling in the softmax

Uses hierarchical softmax in the objective
Subsamples frequent words to avoid pollution
CBOW: predict word given context
Skip-gram: predict context given word
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Word2vec - Skipgram & CBOW

Evaluation in the Papers

All evaluations were on semantic and syntactic
word analogy tasks & sentence completion
They do better than NNLMs!

No downstream task evaluations!

Skip-gram vs CBOW

CBOW: faster to train, slightly better on syntax
Skip-gram: better on infrequent words and better
for semantic relationships
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Glove - “Global Vectors”

e While Word2vec is presented as a local context-window approach, these authors proved that it
really is optimizing a global objective function for approximating corpus statistics.
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Glove - “Global Vectors”

e While Word2vec is presented as a local context-window approach, these authors proved that it
really is optimizing a global objective function for approximating corpus statistics.
e Glove approximates global corpus statistics directly:
o Xij = # of times j occurs in context of i v
. - 2
o  Learn vectors and covectors (asword2vec)  j _ Z f ( Xij) (WiTWj +b; +b; —log Xij)
i,j=1
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Glove - “Global Vectors”

e While Word2vec is presented as a local context-window approach, these authors proved that it
really is optimizing a global objective function for approximating corpus statistics.
e Glove approximates global corpus statistics directly:
o Xij = # of times j occurs in context of i v
o  Learn vectors and covectors (asword2vec)  j _ Z f ( Xij) (WiTWj +b; +5; — log Xij)2
o  Real objective: i,j=1
m v v, = log Xij
e So,the dot-product between two vectors should equal the log of their co-occurence.
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Glove - “Global Vectors”

e While Word2vec is presented as a local context-window approach, these authors proved that it
really is optimizing a global objective function for approximating corpus statistics.
e Glove approximates global corpus statistics directly:
o Xij = # of times j occurs in context of i v
o Learn vectors and covectors (as word2vec)  j _ Z f ( Xij) (WiTWj +b; +5; — log Xij)2
o  Real objective: i,j=1
m v v, = log X,.j
e So, the dot-product between two vectors should equal the log of their co-occurence.
e So,thereis no mysteryin word embeddings - they are optimized to measure frequency!
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Fasttext - “Vectors with Subword Information”

e Also by Mikolov (this time, Facebook)

e Capture morphology: allows for rare words to be represented more confidently based on n-grams
fromn=31to0 6.

e Simply use Skip-gram as well as Word2vec, no real differences in learning model

34



Problems with these Word Embeddings

- Nodifferentiation between conceptual similarity and semantic similarity!
- No semantic/syntactic relations other than measuring corpus co-occurence are directly imposed!
- Inability to capture/represent polysemy (no solutions for this presented today)
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Retrofitting (Faruqui et al.,, NAACL 2015)

e A post-processing step to augment pre-trained
word embeddings.

e Mainidea: use an ontology (i.e.., an undirected
graph) to encode semantic relations that should
be captured by your word embeddings.

Figure 5: Word graph with edges between related words
showing the observed and the inferred word vector repre-
sentations.
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Retrofitting (Faruqui et al.,, NAACL 2015)

e A post-processing step to augment pre-trained Synonym
word embeddings.

e Mainidea: use an ontology (i.e.., an undirected
graph) to encode semantic relations that should
be captured by your word embeddings.

o Ontology: e.g., Wordnet, defining a graph
with vertices as words, edges as relations

o Semantic relation: anything you want to
represent - synonymy, “same size as”-omy ...

same-size
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Retrofitting (Faruqui et al.,, NAACL 2015)

Original embedding space
structure we observe

Figure 5: Word graph with edges between related WN Latent embedding
showing the observed and the inferred word vector repre-

. space structure we
sentations. Seek to impose
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Retrofitting (Faruqui et al.,, NAACL 2015)

New

embeddings
n

‘I’(Q)ZZ a;lla; — di|* + Z Bijllai — a;l*

=1 (i,j)EE
1. Retain old 2. Reflect graph
structure (be structure with
close “enough” the new
to original) embeddings

Figure 5: Word graph with edges between related words
showing the observed and the inferred word vector repre-
sentations.
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Retrofitting (Faruqui et al.,, NAACL 2015)
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Figure 7: Two-dimensional PCA projections of 100-dimensional SG vectors of syntactic analogy “adjective to ad-

verb” relation, before (left) and after (right) retrofitting.
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Retrofitting (Faruqui et al.,, NAACL 2015)

Results & comments

e |mproved results for Glove and Skip-gram embeddings for instrisic evaluation
o E.g.,semantic and syntactic analogies
e Marginal improvements in one downstream task - sentiment analysis (+1%)
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Retrofitting (Faruqui et al.,, NAACL 2015)

Results & comments

e Only factorsin similarity!
o All semantic relations are encoded and optimized in the same way: minimize the
squared euclidean distance between their vectors
e Onlyisundirected!
o What about directed relations - hyper/hyponymy, etc.?
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Counterfitting (Mrksic et al., NAACL 2016)

east expensive British
e Extension of retrofitting west pricey American
e Model synonymy and antonymy north cheaper Australian
. T Before south costly Britain
e Works on level of cosine similarity, not .
) i southeast ~ overpriced  European
euclidean distance. northeast  inexpensive  England
o Attract synoynyms together; eastward costly Brits
o Repulse antonyms from each other; eastern pricy London
p th tici ti £ After easterly overpriced BBC
o reserve the semantic information o ] Giicey UK
original vectors as much as possible. - afford Britain

Table 1: Nearest neighbours for target words using GloVe
vectors before and after counter-fitting



Counterfitting (Mrksic et al., NAACL 2016)

e Extension of retrofitting
e Model synonymy and antonymy Minimize distance

SA(V') = Z T (d(vl, Vi) — )

e Works on level of cosine similarity, not (woles
uU,W
euclidean distance.
Maximize distance

o Attract synoynyms together; AR(V') = Z 7 (6 — d(v), Vi)
o Repulse antonyms from each other; _— (uw)eA
o Preserve the semantic information of P eser veon ’9'”8/ distances
) . _ VSP V V/ E E 27 J d(vlavj))
original vectors as much as possible. i1 JeNG)

C(V, V,) — klAR(V/) + k2SA(V/) + k?’VSP(V’ V/) Words in radial neighborhood
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Counterfitting (Mrksic et al., NAACL 2016)

Results & Commentary
e Only evaluated on an intrinsic evaluation
o Butimproves performance onit
o Adataset with 0.67 annotator
agreement, they get 0.74 score...
e Reveals that distributional hypothesis is
problematic because it will tend to
conflate semantic similarity with

conceptual association

Table 1: Nearest neighbours for target words using GloVe

vectors before and after counter-fitting

east expensive British
west pricey American
north cheaper Australian
Before south costly Britain
southeast ~ overpriced  European
northeast  inexpensive  England
eastward costly Brits
eastern pricy London
After easterly overpriced BBC
— - pricey UK
- afford Britain
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Functional Retrofitting (COLING 2018, Lengerich et al.)

e Generalize retrofitting & counterfitting!
e Encodedirected relationsin any
knowledge graph!
e Represent & model any type of relation,
without a priori knowledge
o Learnsthe parameters of a
semantic relation!
o Nolonger impose everything to be
similar!

Kingsfoil

Figure 1: Toy knowledge graph with diverse relation types that connect treatments (green), diseases
(blue), and persons (red) by known (solid) and unknown (dashed) relations. Traditional methods, which
assume that all relations imply similarity, would retrofit Aragorn and Nazg(l toward similar embeddings.
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Functional Retrofitting (COLING 2018, Lengerich et al.)

e Given aknowledge graph with directed edges of any kind of relations encoded:
o G=(V,E)s.t.nodesiare words, and all edges e = (i, j, r) defines a specific directed relation link r
between two words i and j
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Functional Retrofitting (COLING 2018, Lengerich et al.)

e Given aknowledge graph with directed edges of any kind of relations encoded:
o G=(V,E)s.t.nodesiarewords, and all edges e = (i, j, r) defines a specific directed relation link r
between two words i and j

e Objective: augment set of word embeddings to represent and learn how to represent the relations in G
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Functional Retrofitting (COLING 2018, Lengerich et al.)

e Given aknowledge graph with directed edges of any kind of relations encoded:
o G=(V,E)s.t.nodesiarewords, and all edges e = (i, j, r) defines a specific directed relation link r
between two words i and j

e Objective: augment set of word embeddings to represent and learn how to represent the relations in G

.F) Zza’Lqu - QZ||2 T Z /82,j,TfT qi, q] Z Bz,j,rf'r- qi, q_, I Z P\ f,,-
i€Q f (7'7.7ar)€g (’L,j T‘)Eg_ reR

Preserve the original
vector space
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Functional Retrofitting (COLING 2018, Lengerich et al.)

e Given aknowledge graph with directed edges of any kind of relations encoded:
o G=(V,E)s.t.nodesiarewords, and all edges e = (i, j, r) defines a specific directed relation link r
between two words i and j

e Objective: augment set of word embeddings to represent and learn how to represent the relations in G

.F) ZZOMHQ?: — Qz||2 + Z B%Jﬁ“fr q'uqy Z Bz,j,rfr Qz,Qg I Zp)\ fr,«

i€Q f (i,5,r)EE (4,J,r)€EE " e—— reR
Capture relations of Don’t capture
the knowledge graph nonexistent relations
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Functional Retrofitting (COLING 2018, Lengerich et al.)

e Given aknowledge graph with directed edges of any kind of relations encoded:
o G=(V,E)s.t.nodesiarewords, and all edges e = (i, j, r) defines a specific directed relation link r
between two words i and j

e Objective: augment set of word embeddings to represent and learn how to represent the relations in G

.F) ZZOMHQ?: — Qz||2 + Z B%Jﬁ“fr q'uqy Z Bz,j,rfr Qz,Qg I Zp)\ fr,«

i€Q / (i,j,r)EE (ddr)EE~e reR
Regularize the
functional
relation
parameters
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Functional Retrofitting (COLING 2018, Lengerich et al.)

e Given aknowledge graph with directed edges of any kind of relations encoded:
o G=(V,E)s.t.nodesiarewords, and all edges e = (i, j, r) defines a specific directed relation link r
between two words i and j

e Objective: augment set of word embeddings to represent and learn how to represent the relations in G

]:) :Zai”‘h — Qzl|2 i Z /BZ,J,T'fT' q'u‘b Z /B'L,j,’f'f’l" q'qu) + Zp)\ fr

i€Q / (i,j,r)EE (ddr)EE~e reR
Preserve the original Capture relations of Don’t capture Regglarlze the
: : functional
vector space the knowledge graph nonexistent relations .
relation
parameters
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Functional Retrofitting (COLING 2018, Lengerich et al.)

e Mainidea: learn the relations as functions, simultaneously
with learning the embeddings!
e Relations can have different parameterizations:
o Linear-learnA andb,

fr(Qi7Qj) = ||A’qu + b, — QiH2

o “Neural” -learn A

fr(giq) = o(q} Arg;)
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Functional Retrofitting (COLING 2018, Lengerich et al.)

Main idea: learn the relations as functions, simultaneously
with learning the embeddings!
Relations can have different parameterizations:

o Linear-learnA andb,

fr(Qi7Qj) = ||Arqj + b, — Qi||2

o “Neural” -learn A

fr(giq) = o(q} Arg;)

If Ar =Jand br = 0, we have the
original retrofitting method of
Faruqui et al. 2015!

If A =-land b_= 0, we (more
or less) have counteffitting!

What will the representations of
the learned functional relations
look like? Future work.
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Functional Retrofitting (COLING 2018, Lengerich et al.)

Results & Commentary

e Many experiments were done using relations from Framenet and Wordnet
o  Evaluated on link prediction on the knowledge graphs
o Linear and Neural seem better than baselines
o  Thisis anintrinsic evaluation on how well embeddings capture what they’re trained for

55



Functional Retrofitting (COLING 2018, Lengerich et al.)

Results & Commentary

e Veryinteresting proposal, but presented results are not very interesting!
o  Whatis the character of the learned relations?
m E.g,howdolearned hypo/hypernymy and syn/antonymy relations differ in weights?
m Do they make sense?
o  Does this improve performance for downstream tasks?
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Problems with Evaluating Word Embeddings

REPEVAL 2016 - workshop on word representations, many influential papers
Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance, Chiu et al.
Intrinsic evaluation = analogy questions (“man is to woman as king isto __”), word similarity

problems, 8 datasets tested
Zero (or negative correlation) between intrinsic performance and downstream performance on

POS-tagging, NER, and chunking

[ ]
@)
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Problems with Evaluating Word Embeddings

REPEVAL 2016 - workshop on word representations, many influential papers
Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance, Chiu et al.
Intrinsic evaluation = analogy questions (“man is to woman as king is to __"), word similarity

problems, 8 datasets tested
Zero (or negative correlation) between intrinsic performance and downstream performance on
POS-tagging, NER, and chunking

m  Except on SimLex-999, high correlation!
Likely because SimLex-9299 distingustishes between conceptual relatedness and

semantic similarity. E.g., (film, cinema) = related, not similar; (male, man) = both

[ ]
@)
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Problems with Evaluating Word Embeddings

REPEVAL 2016 - workshop on word representations, many influential papers

e  Problems with Evaluation of Word Embeddings Using Word Similarity Tasks, Faruqui et al.
o  Review of the problems of these datasets, discuss the problems of polysemy, subjectivity of

“similarity”, low correlation with extrinsic, frequency problems of embeddings o



10°

Frequency “Pollution” in Word Embeddings

Translation: “words tend to be surrounded in the
embedding space by words with similar frequencies in
the corpus they are trained upon.”

a power law relationship for C&W embeddings
-~ between a word’s nearest neighbor rank (w.r.t. a
e elghborrellcr)lk " query) and the word’s frequency rank in the train-

ing corpus (nn-rank ~ 1000 - corpus-rank"!7).

Avg. rank by corpus frequency

Figure 4: Avg. word rank by frequency in train-
ing corpus vs. nearest-neighbor rank in the C&W
embedding space.
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Hubness “Pollution”

In a KNN graph of an embedding space, there exist hubs, words that are the nearest neighbor to many
many other words - often tend to be names and helping words (“really
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Different methods, summary

Matrix factorization: if you want to be super mathematical and make proofs

Neural language models: if you want to spend a lot of time and obfuscate linearity (shouldn’t do this)
Word2vec, CBOW: need good syntactic representations, need fast training

Word2vec, Skip-gram: need good semantic representations, need good representations of rare words
Glove: need good, well-rounded representations -- great default embeddings

Easttext: have lots of morphological data, need to capture this well

Retrofitting: need to capture basic features of a knowledge graph in your embeddings

Counterfitting: need to capture synonymy and antonymy explicitly in your embeddings

Functional retrofitting: need to capture complex features of a knowledge graph with many relations
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