
A Brief Survey of Word 
Embedding Methods

Kian Kenyon-Dean
Computational Linguistics Lab Meeting, August 6th 2018 

1



What the heck is a word embedding?

● A vector representation of a word

2



What the heck is a word embedding?

● A vector representation of a word 

○ No! Bag-of-words one-hot-encodings are not word embeddings.

3



What the heck is a word embedding?

● A vector representation of a word 

● A distributed vector representation of a word.

vector 

representation 

of a word 

distributed 
vector 

representation 

of a word

4



What the heck is a word embedding?

A distributed vector representation of a word.

● A mapping from a one-hot-encoded space to a 

much lower dimensional continuous space.

● A vocabulary or dictionary is really a 

one-hot-encoded vector space.

vector 

representation 

of a word 

distributed 
vector 

representation 

of a word

5



What the heck is a word embedding?

A distributed vector representation of a word.

● A mapping from a one-hot-encoded space to a 

much lower dimensional continuous space.

● A vocabulary or dictionary is really a 

one-hot-encoded vector space.

Apple
Frog

Tomato
Potato

...

[1,0,0,0,0…]
[0,1,0,0,0…]
[0,0,1,0,0…]
[0,0,0,1,0…]

...
==

Embedding 
Algorithm

...

6



What the heck is a word embedding?

A distributed vector representation of a word.

● A mapping from a one-hot-encoded space to a 

much lower dimensional continuous space.

● A vocabulary or dictionary is really a 

one-hot-encoded vector space.

Apple
Frog

Tomato
Potato

...

[1,0,0,0,0…]
[0,1,0,0,0…]
[0,0,1,0,0…]
[0,0,0,1,0…]

...
==

Embedding 
Algorithm

...

Discrete 
representations

Continuous 
representations

7



Why do we want distributed representations?

8



Why do we want distributed representations?

● One-hot representations have no linear expressivity!

○ E.g., cos([cat], [dog]) == cos([water], [hedgefund])

9



Why do we want distributed representations?

● One-hot representations have no linear expressivity!

○ E.g., cos([cat], [dog]) == cos([water], [hedgefund])

● Way too large to be practical - dimensionality is size of vocabulary!

10



Why do we want distributed representations?

● One-hot representations have no linear expressivity!

○ E.g., cos([cat], [dog]) == cos([water], [hedgefund])

● Way too large to be practical - dimensionality is size of vocabulary!

● The curse of dimensionality is resolved (Bengio et al, 2003)

○ Distributed representations offer local smoothness properties, which can 

generalize a language model over syntactically/semantically related words.

○ Otherwise, to model a joint distribution of 10-word sentences in a language with 

vocabulary size 100,000, there are 1050 free parameters!

11



Why do we want distributed representations?

● One-hot representations have no linear expressivity!

○ E.g., cos([cat], [dog]) == cos([water], [hedgefund])

● Way too large to be practical - dimensionality is size of vocabulary!

● The curse of dimensionality is resolved (Bengio et al, 2003)

○ Distributed representations offer local smoothness properties, which can 

generalize a language model over syntactically/semantically related words.

○ Otherwise, to model a joint distribution of 10-word sentences in a language with 

vocabulary size 100,000, there are 1050 free parameters!

12



Why do we want distributed representations?

Motivated by the distributional hypothesis (Harris, 1954):

You shall know a word by the company it keeps. (Firth, 1957)

- Words with similar distributions will have similar meanings

- Words that appear in similar contexts have similar meanings

13



Language Modelling

Here, we would like to model the probability of a word given the previous sequence. This practically 

requires us to limit to the previous m words in the sequence.

14



Language Modelling

Here, we would like to model the probability of a word given the previous sequence. This practically 

requires us to limit to the previous m words in the sequence.

Traditional methods are count-based; e.g., for trigrams: 

15



Language Modelling

We would like to model the probability of a word given the previous sequence. This practically requires 

us to limit to the previous m words in the sequence.

Traditional methods are count-based; e.g., for trigrams: 

Problems: many sequences will have 0 probability (requires not great smoothing techniques),

16



Language Modelling

We would like to model the probability of a word given the previous sequence. This practically requires 

us to limit to the previous m words in the sequence.

Traditional methods are count-based; e.g., for trigrams: 

Problems: many sequences will have 0 probability (requires not great smoothing techniques),                      

no generalization for semantically similar words, 

17



Language Modelling

We would like to model the probability of a word given the previous sequence. This practically requires 

us to limit to the previous m words in the sequence.

Traditional methods are count-based; e.g., for trigrams: 

Problems: many sequences will have 0 probability (requires not great smoothing techniques),                      

no generalization for semantically similar words, depends on Markov assumption (no longer than m 

dependency understanding).

18



Neural Language Modelling

Solution: represent words as continuous vectors in Rm, m << |V|.

● Learn vectors by building an NNLM (neural network 

language model)

● Objective: predict P(wt = i | context words)
● i.e., map a sequence wt-n+1, …, wt-1 to predict the 

probability that wt is word i
● Key: represent words with vectors C(i) for word i

19



Neural Language Modelling

Solution: represent words as continuous vectors in Rm, m << |V|.

● Learn vectors by building an NNLM (neural network 

language model)

● Objective: predict P(wt = i | context words)
● i.e., map a sequence wt-n+1, …, wt-1 to predict the 

probability that wt is word i
● Key: represent words with vectors C(i) for word i

A feed-forward NNLM will concatenate the 
fixed number of context vectors.

A recurrent NNLM uses an RNN to pool the 
vectors, thus incorporating word order.

20



Neural Language Modelling

Characteristics & Problems

● Softmax output layer is huge! |V| output neurons!
● Feed-forward NNLM requires fixed context length:

○ No generalization across words in different positions on 
the parameters of the model;

○ Takes a long time to train (weeks!)
■ Bengio 2003: 3 weeks on 40 CPUs!

● Recurrent NNLM generalizes model parameters
○ Difficult to train, chaotic dynamical system
○ But, is faster to train than FFNN
○ Generally performs better than FFNN

21



Neural Language Modelling

Characteristics & Problems

● Softmax output layer is huge! |V| output neurons!
● Feed-forward NNLM requires fixed context length:

○ No generalization across words in different positions on 
the parameters of the model;

○ Takes a long time to train (weeks!)
■ Bengio 2003: 3 weeks on 40 CPUs!

● Recurrent NNLM generalizes model parameters
○ Difficult to train, chaotic dynamical system
○ But, is faster to train than FFNN
○ Generally performs better than FFNN

22



Matrix Factorization

● Global method to build low-rank approximations of a massive matrix of word 

co-occurence statistics in a corpus.

● Includes methods:
○ LSA (latent semantic analysis)

■ Word-document matrix. M
ij
 = # times word i appears in document j

○ HAL (hyperspace analogue to language)
■ Word-word matrix. M

ij
 = # times word i appears in some local context of another word j

○ [H]PCA (Hellinger principal component analysis)
■ PCA is a common method to factorize a matrix into smaller vectors.

23



Matrix Factorization

● Global method to build low-rank approximations of a massive matrix of word 

co-occurence statistics in a corpus.

● Includes methods:
○ LSA (latent semantic analysis)

■ Word-document matrix. M
ij
 = # times word i appears in document j

○ HAL (hyperspace analogue to language)
■ Word-word matrix. M

ij
 = # times word i appears in some local context of another word j

○ [H]PCA ([Hellinger] principal component analysis)
■ PCA is a common method to factorize a matrix into smaller vectors.

24



Matrix Factorization 

● Begin with matrix M with dimensions |V| x |D|
○ D is the set of context words that we care about (often just the vocabulary V)

● Define M
ij
 in some clever way:

○ E.g., M
ij
 = P(word j in “context of” word i); count this in training corpus

○ Can make it PPMI: divide by P(i)*P(j)

● Learn a set of |V| vectors V and |D| “context vectors” W with an objective function

○ Base form: v
i
 * w

j
 = log(M

ij
)

● Learning is done with matrix factorization algorithm

25



Matrix Factorization 

● Begin with matrix M with dimensions |V| x |D|
○ D is the set of context words that we care about (often just the vocabulary V)

● Define M
ij
 in some clever way:

○ E.g., M
ij
 = P(word j in “context of” word i)

○ Can make it PPMI: divide by P(i)*P(j)

● Learn matrix of word vectors V (|V|x d) and “context vectors” W (d x |D|) with objective function

○ Base form: v
i
 * w

j
 = log(M

ij
)

● Learning is done with matrix factorization algorithm for factorizing: log(M) = VW

26



Word2vec - Skipgram & CBOW

● Expressed as an online neural learner trained to 

maximize the log-likelihood of the context given 
word, for Skip-gram (vice versa for CBOW)

● But is actually “log-linear”, no nonlinear 

projection layer (unlike NNLMs)

● Linear makes sense: using a nonlinear neural 

network “would obfuscate the linear structure we 
are trying to capture” [Glove paper]

27



Word2vec - Skipgram & CBOW

Unique characteristics

● Online learner, much much faster than NNLMs

● Uses negative sampling in the softmax

● Uses hierarchical softmax in the objective

● Subsamples frequent words to avoid pollution

● CBOW: predict word given context
● Skip-gram: predict context given word

28



Word2vec - Skipgram & CBOW

Evaluation in the Papers
● All evaluations were on semantic and syntactic 

word analogy tasks & sentence completion

● They do better than NNLMs!

● No downstream task evaluations!

Skip-gram vs CBOW
● CBOW: faster to train, slightly better on syntax
● Skip-gram: better on infrequent words and better 

for semantic relationships

29



● While Word2vec is presented as a local context-window approach, these authors proved that it 

really is optimizing a global objective function for approximating corpus statistics.

Glove - “Global Vectors”

30



● While Word2vec is presented as a local context-window approach, these authors proved that it 

really is optimizing a global objective function for approximating corpus statistics.
● Glove approximates global corpus statistics directly:

○ X
ij
 = # of times j occurs in context of i

○ Learn vectors and covectors (as word2vec)

Glove - “Global Vectors”

31



● While Word2vec is presented as a local context-window approach, these authors proved that it 

really is optimizing a global objective function for approximating corpus statistics.
● Glove approximates global corpus statistics directly:

○ X
ij
 = # of times j occurs in context of i

○ Learn vectors and covectors (as word2vec)

○ Real objective:

■ vi * vj = log Xij

● So, the dot-product between two vectors should equal the log of their co-occurence.

Glove - “Global Vectors”

32



● While Word2vec is presented as a local context-window approach, these authors proved that it 

really is optimizing a global objective function for approximating corpus statistics.
● Glove approximates global corpus statistics directly:

○ X
ij
 = # of times j occurs in context of i

○ Learn vectors and covectors (as word2vec)

○ Real objective:

■ vi * vj = log Xij

● So, the dot-product between two vectors should equal the log of their co-occurence.
● So, there is no mystery in word embeddings - they are optimized to measure frequency!

Glove - “Global Vectors”

33



Fasttext - “Vectors with Subword Information”

● Also by Mikolov (this time, Facebook)

● Capture morphology: allows for rare words to be represented more confidently based on n-grams 

from n=3 to 6.

● Simply use Skip-gram as well as Word2vec, no real differences in learning model

34



Problems with these Word Embeddings

- No differentiation between conceptual similarity and semantic similarity!
- No semantic/syntactic relations other than measuring corpus co-occurence are directly imposed!

- Inability to capture/represent polysemy (no solutions for this presented today)

35



Retrofitting (Faruqui et al., NAACL 2015)

● A post-processing step to augment pre-trained 
word embeddings.

● Main idea: use an ontology (i.e.., an undirected 

graph) to encode semantic relations that should 

be captured by your word embeddings.

○ Ontology: e.g., Wordnet, defining a graph 

with vertices as words, edges as relations
○ Semantic relation: anything you want to 

represent - synonymy, hyponymy, “is bigger 

than”-omy ...
36



Retrofitting (Faruqui et al., NAACL 2015)

● A post-processing step to augment pre-trained 
word embeddings.

● Main idea: use an ontology (i.e.., an undirected 

graph) to encode semantic relations that should 

be captured by your word embeddings.

○ Ontology: e.g., Wordnet, defining a graph 

with vertices as words, edges as relations
○ Semantic relation: anything you want to 

represent - synonymy, “same size as”-omy ...

37

rare rarely
synonym

shoe foot
same-size



Retrofitting (Faruqui et al., NAACL 2015)

38

Latent embedding 
space structure we 

seek to impose

Original embedding space 
structure we observe



Retrofitting (Faruqui et al., NAACL 2015)

39

New 
embeddings

1. Retain old 
structure (be 

close “enough” 
to original)

2. Reflect graph 
structure with 

the new 
embeddings



Retrofitting (Faruqui et al., NAACL 2015)

40



Retrofitting (Faruqui et al., NAACL 2015)

41

Results & comments

● Improved results for Glove and Skip-gram embeddings for instrisic evaluation
○ E.g., semantic and syntactic analogies

● Marginal improvements in one downstream task - sentiment analysis (+1%)



Retrofitting (Faruqui et al., NAACL 2015)

42

Results & comments

● Improved results for Glove and Skip-gram embeddings for instrisic evaluation
○ E.g., semantic and syntactic analogies

● Marginal improvements in one downstream task - sentiment analysis (+1%)

● Only factors in similarity! 

○ All semantic relations are encoded and optimized in the same way: minimize the 
squared euclidean distance between their vectors

● Only is undirected!

○ What about directed relations - hyper/hyponymy, etc.?



Counterfitting (Mrkšić et al., NAACL 2016)

● Extension of retrofitting

● Model synonymy and antonymy
● Works on level of cosine similarity, not 

euclidean distance.

○ Attract synoynyms together;

○ Repulse antonyms from each other;

○ Preserve the semantic information of 

original vectors as much as possible.

43



Counterfitting (Mrkšić et al., NAACL 2016)

● Extension of retrofitting

● Model synonymy and antonymy
● Works on level of cosine similarity, not 

euclidean distance.

○ Attract synoynyms together;

○ Repulse antonyms from each other;

○ Preserve the semantic information of 

original vectors as much as possible.

44

Minimize distance

Maximize distance

Preserve original distances

Words in radial neighborhood



Counterfitting (Mrkšić et al., NAACL 2016)

Results & Commentary
● Only evaluated on an intrinsic evaluation

○ But improves performance on it

○ A dataset with 0.67 annotator 

agreement, they get 0.74 score...

● Reveals that distributional hypothesis is 

problematic because it will tend to 

conflate semantic similarity with 

conceptual association

45



Functional Retrofitting (COLING 2018, Lengerich et al.)

● Generalize retrofitting & counterfitting!

● Encode directed relations in any 

knowledge graph!

● Represent & model any type of relation, 

without a priori knowledge
○ Learns the parameters of a 

semantic relation!

○ No longer impose everything to be 

similar!

46



Functional Retrofitting (COLING 2018, Lengerich et al.)

● Given a knowledge graph with directed edges of any kind of relations encoded:

○ G = (V, E) s.t. nodes i are words, and all edges e = (i, j, r) defines a specific directed relation link r 
between two words i and j

● Objective: augment set of word embeddings to represent and learn how to represent the relations in G

47



Functional Retrofitting (COLING 2018, Lengerich et al.)

● Given a knowledge graph with directed edges of any kind of relations encoded:

○ G = (V, E) s.t. nodes i are words, and all edges e = (i, j, r) defines a specific directed relation link r 
between two words i and j

● Objective: augment set of word embeddings to represent and learn how to represent the relations in G

48



Functional Retrofitting (COLING 2018, Lengerich et al.)

● Given a knowledge graph with directed edges of any kind of relations encoded:

○ G = (V, E) s.t. nodes i are words, and all edges e = (i, j, r) defines a specific directed relation link r 
between two words i and j

● Objective: augment set of word embeddings to represent and learn how to represent the relations in G

49

Preserve the original 
vector space



Functional Retrofitting (COLING 2018, Lengerich et al.)

● Given a knowledge graph with directed edges of any kind of relations encoded:

○ G = (V, E) s.t. nodes i are words, and all edges e = (i, j, r) defines a specific directed relation link r 
between two words i and j

● Objective: augment set of word embeddings to represent and learn how to represent the relations in G

50

Preserve the original 
vector space

Capture relations of 
the knowledge graph

Don’t capture 
nonexistent relations



Functional Retrofitting (COLING 2018, Lengerich et al.)

● Given a knowledge graph with directed edges of any kind of relations encoded:

○ G = (V, E) s.t. nodes i are words, and all edges e = (i, j, r) defines a specific directed relation link r 
between two words i and j

● Objective: augment set of word embeddings to represent and learn how to represent the relations in G

51

Preserve the original 
vector space

Capture relations of 
the knowledge graph

Don’t capture 
nonexistent relations

Regularize the 
functional 
relation 
parameters



Functional Retrofitting (COLING 2018, Lengerich et al.)

● Given a knowledge graph with directed edges of any kind of relations encoded:

○ G = (V, E) s.t. nodes i are words, and all edges e = (i, j, r) defines a specific directed relation link r 
between two words i and j

● Objective: augment set of word embeddings to represent and learn how to represent the relations in G

52

Preserve the original 
vector space

Capture relations of 
the knowledge graph

Don’t capture 
nonexistent relations

Regularize the 
functional 
relation 
parameters



● Main idea: learn the relations as functions, simultaneously 
with learning the embeddings!

● Relations can have different parameterizations:

○ Linear - learn Ar and br

○ “Neural” - learn Ar

Functional Retrofitting (COLING 2018, Lengerich et al.)

53



● Main idea: learn the relations as functions, simultaneously 
with learning the embeddings!

● Relations can have different parameterizations:

○ Linear - learn Ar and br

○ “Neural” - learn Ar

Functional Retrofitting (COLING 2018, Lengerich et al.)

54

If Ar = I and br = 0, we have the 
original retrofitting method of 

Faruqui et al. 2015!

If Ar = -I and br = 0, we (more 
or less) have counterfitting!

What will the representations of 
the learned functional relations 

look like? Future work.



Results & Commentary
● Many experiments were done using relations from Framenet and Wordnet

○ Evaluated on link prediction on the knowledge graphs

○ Linear and Neural seem better than baselines

○ This is an intrinsic evaluation on how well embeddings capture what they’re trained for

● Very interesting proposal, but presented results are not very interesting!

○ What is the character of the learned relations?

■ E.g., how do learned hypo/hypernymy and syn/antonymy relations differ in weights?

■ Do they make sense?

○ Does this improve performance for downstream tasks?

55

Functional Retrofitting (COLING 2018, Lengerich et al.)



Results & Commentary
● Many experiments were done using relations from Framenet and Wordnet

○ Evaluated on link prediction on the knowledge graphs

○ Linear and Neural seem better than baselines

○ This is an intrinsic evaluation on how well embeddings capture what they’re trained for

● Very interesting proposal, but presented results are not very interesting!

○ What is the character of the learned relations?

■ E.g., how do learned hypo/hypernymy and syn/antonymy relations differ in weights?

■ Do they make sense?

○ Does this improve performance for downstream tasks?

56

Functional Retrofitting (COLING 2018, Lengerich et al.)



Problems with Evaluating Word Embeddings

REPEVAL 2016 - workshop on word representations, many influential papers
● Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance, Chiu et al.

○ Intrinsic evaluation = analogy questions (“man is to woman as king is to ___”), word similarity 

problems, 8 datasets tested

○ Zero (or negative correlation) between intrinsic performance and downstream performance on 

POS-tagging, NER, and chunking

■ Except on SimLex-999, high correlation!

■ Likely because SimLex-999 distingustishes between conceptual relatedness and 

semantic similarity. E.g., (film, cinema) = related, not similar; (male, man) = both

● Problems with Evaluation of Word Embeddings Using Word Similarity Tasks, Faruqui et al.

○ Review of the problems of these datasets, discuss the problems of polysemy, subjectivity of 
“similarity”, low correlation with extrinsic, frequency problems of embeddings

57



Problems with Evaluating Word Embeddings

REPEVAL 2016 - workshop on word representations, many influential papers
● Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance, Chiu et al.

○ Intrinsic evaluation = analogy questions (“man is to woman as king is to ___”), word similarity 

problems, 8 datasets tested

○ Zero (or negative correlation) between intrinsic performance and downstream performance on 

POS-tagging, NER, and chunking

■ Except on SimLex-999, high correlation!

■ Likely because SimLex-999 distingustishes between conceptual relatedness and 

semantic similarity. E.g., (film, cinema) = related, not similar; (male, man) = both

● Problems with Evaluation of Word Embeddings Using Word Similarity Tasks, Faruqui et al.

○ Review of the problems of these datasets, discuss the problems of polysemy, subjectivity of 
“similarity”, low correlation with extrinsic, frequency problems of embeddings

58



Problems with Evaluating Word Embeddings

REPEVAL 2016 - workshop on word representations, many influential papers
● Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance, Chiu et al.

○ Intrinsic evaluation = analogy questions (“man is to woman as king is to ___”), word similarity 

problems, 8 datasets tested

○ Zero (or negative correlation) between intrinsic performance and downstream performance on 

POS-tagging, NER, and chunking

■ Except on SimLex-999, high correlation!

■ Likely because SimLex-999 distingustishes between conceptual relatedness and 

semantic similarity. E.g., (film, cinema) = related, not similar; (male, man) = both

● Problems with Evaluation of Word Embeddings Using Word Similarity Tasks, Faruqui et al.

○ Review of the problems of these datasets, discuss the problems of polysemy, subjectivity of 
“similarity”, low correlation with extrinsic, frequency problems of embeddings

59



Frequency “Pollution” in Word Embeddings

Translation: “words tend to be surrounded in the 

embedding space by words with similar frequencies in 

the corpus they are trained upon.”

60



Hubness “Pollution” in Word Embeddings

In a KNN graph of an embedding space, there exist hubs, words that are the nearest neighbor to many 
many other words - often tend to be names and helping words (“really”, “anyway”, etc.)

61



Different methods, summary

● Matrix factorization: if you want to be super mathematical and make proofs

● Neural language models: if you want to spend a lot of time and obfuscate linearity (shouldn’t do this)

● Word2vec, CBOW: need good syntactic representations, need fast training

● Word2vec, Skip-gram: need good semantic representations, need good representations of rare words
● Glove: need good, well-rounded representations  -- great default embeddings

● Fasttext: have lots of morphological data, need to capture this well

● Retrofitting: need to capture basic features of a knowledge graph in your embeddings

● Counterfitting: need to capture synonymy and antonymy explicitly in your embeddings

● Functional retrofitting: need to capture complex features of a knowledge graph with many relations

62



References

● HAL (matrix factorization): Producing high-dimensional semantic spaces from lexical co-occurrence, Lund & Burgess (1996).
● HPCA (matrix factorization): Word Embeddings through Hellinger PCA,  Lebret & Collobert (2014).
● NNLMs: A Neural Probabilistic Language Model, Bengio et al. (2003). Good blog post about this & new techniques (2017).
● Word2vec: ICLR paper with CBOW (2013); NIPS paper with Hierarchical Softmax and Negative Sampling (2013).
● Glove: Global Vectors for Word Representation, Stanford. (2015)
● Fasttext: Enriching Word Vectors with Subword Information, Facebook. (2017)
● Retrofitting: Retrofitting Word Vectors to Semantic Lexicons, Faruqui et al. (2015)
● Counterfitting: Counter-fitting Word Vectors to Linguistic Constraints, Mrksic et al. (2016)
● Functional retro: Retrofitting Distributional Embeddings to Knowledge Graphs with Functional Relations, Lengerich et al. (2018)
● Problems 1: Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance, Chiu et al. (2016)
● Problems 2: Problems With Evaluation of Word Embeddings Using Word Similarity Tasks, Faruqui et al. (2016)
● All the problems! RepEval 2016, famous workshop on word embeddings, accepted papers.
● Evaluation methods: Evaluation methods for unsupervised word embeddings, Schnabel et al. (2016)

63

https://link.springer.com/content/pdf/10.3758%2FBF03204766.pdf
http://www.aclweb.org/anthology/E14-1051
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://medium.com/syncedreview/language-model-a-survey-of-the-state-of-the-art-technology-64d1a2e5a466
https://arxiv.org/pdf/1301.3781.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://arxiv.org/pdf/1607.04606.pdf
https://arxiv.org/pdf/1411.4166.pdf
http://www.anthology.aclweb.org/N/N16/N16-1018.pdf
https://arxiv.org/abs/1708.00112
http://www.aclweb.org/anthology/W16-2501
https://arxiv.org/pdf/1605.02276.pdf
https://sites.google.com/site/repevalacl16/accepted-papers
http://www.aclweb.org/anthology/D15-1036


Thank you!

- Kian

64


